skhubness.neighbors.RadiusNeighborsRegressor

class skhubness.neighbors.RadiusNeighborsRegressor(radius=1.0, weights='uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)[source]

Regression based on neighbors within a fixed radius.

The target is predicted by local interpolation of the targets associated of the nearest neighbors in the training set.

Read more in the scikit-learn User Guide.

Parameters
radius: float, optional (default = 1.0)

Range of parameter space to use by default for radius_neighbors() queries.

weights: str or callable

weight function used in prediction. Possible values:

  • ‘uniform’: uniform weights. All points in each neighborhood are weighted equally.

  • ‘distance’: weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.

  • [callable]: a user-defined function which accepts an array of distances, and returns an array of the same shape containing the weights.

Uniform weights are used by default.

algorithm: {‘auto’, ‘falconn_lsh’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional

Algorithm used to compute the nearest neighbors:

  • ‘falconn_lsh’ will use FalconnLSH

  • ‘ball_tree’ will use BallTree

  • ‘kd_tree’ will use KDTree

  • ‘brute’ will use a brute-force search.

  • ‘auto’ will attempt to decide the most appropriate algorithm based on the values passed to fit() method.

Note: fitting on sparse input will override the setting of this parameter, using brute force.

algorithm_params: dict, optional

Override default parameters of the NN algorithm. For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100} one hundred approximate neighbors are retrieved with LSH. If parameter hubness is set, the candidate neighbors are further reordered with hubness reduction. Finally, n_neighbors objects are used from the (optionally reordered) candidates.

hubness: {‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional

Hubness reduction algorithm

  • ‘mutual_proximity’ or ‘mp’ will use MutualProximity

  • ‘local_scaling’ or ‘ls’ will use LocalScaling

  • ‘dis_sim_local’ or ‘dsl’ will use DisSimLocal

If None, no hubness reduction will be performed (=vanilla kNN).

hubness_params: dict, optional

Override default parameters of the selected hubness reduction algorithm. For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’} a mutual proximity variant is used, which models distance distributions with independent Gaussians.

leaf_size: int, optional (default = 30)

Leaf size passed to BallTree or KDTree. This can affect the speed of the construction and query, as well as the memory required to store the tree. The optimal value depends on the nature of the problem.

p: integer, optional (default = 2)

Power parameter for the Minkowski metric. When p = 1, this is equivalent to using manhattan_distance (l1), and euclidean_distance (l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.

metric: string or callable, default ‘minkowski’

the distance metric to use for the tree. The default metric is minkowski, and with p=2 is equivalent to the standard Euclidean metric. See the documentation of the DistanceMetric class for a list of available metrics.

metric_params: dict, optional (default = None)

Additional keyword arguments for the metric function.

n_jobs: int or None, optional (default=None)

The number of parallel jobs to run for neighbors search. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See scikit-learn Glossary for more details.

Notes

See Nearest Neighbors in the scikit-learn online documentation for a discussion of the choice of algorithm and leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from skhubness.neighbors import RadiusNeighborsRegressor
>>> neigh = RadiusNeighborsRegressor(radius=1.0)
>>> neigh.fit(X, y) 
RadiusNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[0.5]
__init__(radius=1.0, weights='uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)[source]

Initialize self. See help(type(self)) for accurate signature.

Methods

__init__([radius, weights, algorithm, …])

Initialize self.

fit(X, y)

Fit the model using X as training data and y as target values

get_params([deep])

Get parameters for this estimator.

kcandidates([X, n_neighbors, return_distance])

Finds the K-neighbors of a point.

predict(X)

Predict the target for the provided data

radius_neighbors([X, radius, return_distance])

Finds the neighbors within a given radius of a point or points.

radius_neighbors_graph([X, radius, mode])

Computes the (weighted) graph of Neighbors for points in X

score(X, y[, sample_weight])

Return the coefficient of determination R^2 of the prediction.

set_params(**params)

Set the parameters of this estimator.

fit(X, y)

Fit the model using X as training data and y as target values

Parameters
X{array-like, sparse matrix, BallTree, KDTree}

Training data. If array or matrix, shape [n_samples, n_features], or [n_samples, n_samples] if metric=’precomputed’.

y{array-like, sparse matrix}
Target values, array of float values, shape = [n_samples]

or [n_samples, n_outputs]

get_params(deep=True)

Get parameters for this estimator.

Parameters
deepbool, default=True

If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns
paramsmapping of string to any

Parameter names mapped to their values.

kcandidates(X=None, n_neighbors=None, return_distance=True) → numpy.ndarray[source]

Finds the K-neighbors of a point. Returns indices of and distances to the neighbors of each point.

Parameters
Xarray-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’

The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor.

n_neighborsint

Number of neighbors to get (default is the value passed to the constructor).

return_distanceboolean, optional. Defaults to True.

If False, distances will not be returned

Returns
distarray

Array representing the lengths to points, only present if return_distance=True

indarray

Indices of the nearest points in the population matrix.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who’s the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]])) 
(array([[0.5]]), array([[2]]))

As you can see, it returns [[0.5]], and [[2]], which means that the element is at distance 0.5 and is the third element of samples (indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False) 
array([[1],
       [2]]...)
predict(X)[source]

Predict the target for the provided data

Parameters
X: array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’

Test samples.

Returns
y: array of float, shape = [n_samples] or [n_samples, n_outputs]

Target values

radius_neighbors(X=None, radius=None, return_distance=True)[source]

Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset lying in a ball with size radius around the points of the query array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their query point.

Parameters
Xarray-like, (n_samples, n_features), optional

The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor.

radiusfloat

Limiting distance of neighbors to return. (default is the value passed to the constructor).

return_distanceboolean, optional. Defaults to True.

If False, distances will not be returned

Returns
distarray, shape (n_samples,) of arrays

Array representing the distances to each point, only present if return_distance=True. The distance values are computed according to the metric constructor parameter.

indarray, shape (n_samples,) of arrays

An array of arrays of indices of the approximate nearest points from the population matrix that lie within a ball of size radius around the query points.

Notes

Because the number of neighbors of each point is not necessarily equal, the results for multiple query points cannot be fit in a standard data array. For efficiency, radius_neighbors returns arrays of objects, where each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier class from an array representing our data set and ask who’s the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0])) 
[1.5 0.5]
>>> print(np.asarray(rng[1][0])) 
[1 2]

The first array returned contains the distances to all points which are closer than 1.6, while the second array returned contains their indices. In general, multiple points can be queried at the same time.

radius_neighbors_graph(X=None, radius=None, mode='connectivity')[source]

Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than radius.

Parameters
Xarray-like, shape = [n_samples, n_features], optional

The query point or points. If not provided, neighbors of each indexed point are returned. In this case, the query point is not considered its own neighbor.

radiusfloat

Radius of neighborhoods. (default is the value passed to the constructor).

mode{‘connectivity’, ‘distance’}, optional

Type of returned matrix: ‘connectivity’ will return the connectivity matrix with ones and zeros, in ‘distance’ the edges are Euclidean distance between points.

Returns
Asparse matrix in CSR format, shape = [n_samples, n_samples]

A[i, j] is assigned the weight of edge that connects i to j.

See also

kneighbors_graph

Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 0.],
       [1., 0., 1.]])
score(X, y, sample_weight=None)

Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual sum of squares ((y_true - y_pred) ** 2).sum() and v is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a R^2 score of 0.0.

Parameters
Xarray-like of shape (n_samples, n_features)

Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead, shape = (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

yarray-like of shape (n_samples,) or (n_samples, n_outputs)

True values for X.

sample_weightarray-like of shape (n_samples,), default=None

Sample weights.

Returns
scorefloat

R^2 of self.predict(X) wrt. y.

Notes

The R2 score used when calling score on a regressor uses multioutput='uniform_average' from version 0.23 to keep consistent with default value of r2_score(). This influences the score method of all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as pipelines). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters
**paramsdict

Estimator parameters.

Returns
selfobject

Estimator instance.