

    
      
          
            
  
scikit-hubness: high-dimensional data mining

scikit-hubness is a Python package for analysis of hubness
in high-dimensional data. It provides hubness reduction and
approximate nearest neighbor search via a drop-in replacement for
sklearn.neighbors [https://scikit-learn.org/stable/modules/classes.html#module-sklearn.neighbors].











Getting started

Get started with scikit-hubness in a breeze.
Find how to install the package and
see all core functionality applied in a single quick start example.




User Guide

The User Guide introduces the main concepts of scikit-hubness.
It explains, how to analyze your data sets for hubness,
and how to use the package to lift this curse of dimensionality.
You will also find examples how to use skhubness.neighbors
for approximate nearest neighbor search (with or without hubness reduction).




API Documentation

The API Documentation provides detailed information
of the implemented methods.
This information includes method descriptions, parameters, references, examples, etc.
Find all the information about specific modules and functions of scikit-hubness in this section.




History

A brief history of the package,
and how it relates to the Hub-Toolbox’es.




Development

There are several possibilities to contribute
to this free open source software. We highly appreciate all input from the community,
be it bug reports or code contributions.

Source code, issue tracking, discussion, and continuous integration appear on
our GitHub page [https://github.com/VarIr/scikit-hubness].




What’s new

To see what’s new in the latest version of scikit-hubness,
have a look at the changelog.







            

          

      

      

    

  

    
      
          
            
  
Installation


Installation from PyPI

The current release of scikit-hubness can be installed from PyPI:

pip install scikit-hubness








Dependencies

All strict dependencies of scikit-hubness are automatically installed
by pip. Some optional dependencies (certain ANN libraries) may not
yet be available from PyPI. If you require one of these libraries,
please refer to the library’s documentation for building instructions.
For example, at the time of writing, puffinn was not available on PyPI.
Building and installing is straight-forward:

git clone https://github.com/puffinn/puffinn.git
cd puffinn
python3 setup.py build
pip install .








Installation from source

You can always grab the latest version of scikit-hubness directly from GitHub:

cd install_dir
git clone git@github.com:VarIr/scikit-hubness.git
cd scikit-hubness
pip install -e .





This is the recommended approach, if you want to contribute to the development of scikit-hubness.




Supported platforms

scikit-hubness currently supports all major operating systems:


	Linux


	MacOS X


	Windows




Note, that not all approximate nearest neighbor algorithms used in scikit-hubness
are available on all platforms.
This is because we rely on third-party libraries, which in some cases are not
available for all platforms.
The table below indicates, which libraries and
algorithms are currently supported on your operating system.
All exact nearest neighbor algorithms (as provided by scikit-learn) are available on all platforms.










	library

	algorithm

	Linux

	MacOS

	Windows



	nmslib

	hnsw

	x

	x

	x



	annoy

	rptree

	x

	x

	x



	ngtpy

	nng

	x

	x

	


	falconn

	falconn_lsh

	x

	x

	


	puffinn

	lsh

	x

	x

	


	sklearn

	(all exact)

	x

	x

	x












            

          

      

      

    

  

    
      
          
            
  
Quick start example

Users of scikit-hubness typically want to


	analyse, whether their data show hubness


	reduce hubness


	perform learning (classification, regression, …)




The following example shows all these steps for an example dataset
from the text domain (dexter).
Please make sure you have installed scikit-hubness
(installation instructions).

First, we load the dataset and inspect its size.

from skhubness.data import load_dexter
X, y = load_dexter()
print(f'X.shape = {X.shape}, y.shape={y.shape}')





Dexter is embedded in a high-dimensional space,
and could, thus, be prone to hubness.
Therefore, we assess the actual degree of hubness.

from skhubness import Hubness
hub = Hubness(k=10, metric='cosine')
hub.fit(X)
k_skew = hub.score()
print(f'Skewness = {k_skew:.3f}')





As a rule-of-thumb, skewness > 1.2 indicates significant hubness.
Additional hubness indices are available, for example:

print(f'Robin hood index: {hub.robinhood_index:.3f}')
print(f'Antihub occurrence: {hub.antihub_occurrence:.3f}')
print(f'Hub occurrence: {hub.hub_occurrence:.3f}')





There is considerable hubness in dexter.
Let’s see, whether hubness reduction can improve
kNN classification performance.

from sklearn.model_selection import cross_val_score
from skhubness.neighbors import KNeighborsClassifier

# vanilla kNN
knn_standard = KNeighborsClassifier(n_neighbors=5,
                                    metric='cosine')
acc_standard = cross_val_score(knn_standard, X, y, cv=5)

# kNN with hubness reduction (mutual proximity)
knn_mp = KNeighborsClassifier(n_neighbors=5,
                              metric='cosine',
                              hubness='mutual_proximity')
acc_mp = cross_val_score(knn_mp, X, y, cv=5)

print(f'Accuracy (vanilla kNN): {acc_standard.mean():.3f}')
print(f'Accuracy (kNN with hubness reduction): {acc_mp.mean():.3f}')





Accuracy was considerably improved by mutual proximity (MP).
But did MP actually reduce hubness?

hub_mp = Hubness(k=10, metric='cosine',
                 hubness='mutual_proximity')
hub_mp.fit(X)
k_skew_mp = hub_mp.score()
print(f'Skewness after MP: {k_skew_mp:.3f} '
      f'(reduction of {k_skew - k_skew_mp:.3f})')
print(f'Robin hood: {hub_mp.robinhood_index:.3f} '
      f'(reduction of {hub.robinhood_index - hub_mp.robinhood_index:.3f})')





Yes!

The neighbor graph can also be created directly,
with or without hubness reduction:

from skhubness.neighbors import kneighbors_graph
neighbor_graph = kneighbors_graph(X,
                                  n_neighbors=5,
                                  hubness='mutual_proximity')





You may want to precompute the graph like this,
in order to avoid computing it repeatedly for subsequent hubness estimation and learning.





            

          

      

      

    

  

    
      
          
            
  
User guide

Welcome to scikit-hubness!
Here we describe the core functionality of the package
(hubness analysis, hubness reduction, neighbor search),
and provide several usage examples.


Contents:


	Core concepts
	The hubness phenomenon

	The scikit-hubness package

	Approximate nearest neighbor search methods

	Hubness reduction methods

	Approximate hubness reduction





	Hubness analysis
	Hubness measures





	Hubness reduction

	Nearest neighbors

	Examples
	Example: Hubness reduction

	Example: Approximate nearest neighbor search

	Example: Approximate hubness reduction

	Example: From sklearn to skhubness













            

          

      

      

    

  

    
      
          
            
  
Core Concepts

There are three main parts of scikit-hubness. Before we describe the corresponding subpackages,
we briefly introduce the hubness phenomenon itself.


The hubness phenomenon

Hubness is a phenomenon of intrinsically high-dimensional data,
detrimental to data mining and learning tasks.
It refers to the tendency of hub and antihub emergence in k-nearest neighbor graphs (kNNGs):
Hubs are objects that appear unwontedly often among the k-nearest neighbor lists of other objects,
while antihubs hardly or never appear in these lists.
Thus, hubs propagate their metainformation (such as class labels) widely within a kNNG.
Conversely, information carried by antihubs is effectively lost.
As a result, hubness leads to semantically distorted spaces,
that negatively impact a large variety of tasks.

Music information retrieval is a show-case example for hubness:
It has been shown, that recommendation lists based on music similarity scores
tend to completely ignore certain songs (antihubs).
On the other hand, different songs are recommended over and over again (hubs),
sometimes even when they do not fit.
Both effects are problematic: Users are provided with unsuitable (hub) recommendations,
while artists that (unknowingly) producing antihub songs, may remain fameless unjustifiably.




The scikit-hubness package

scikit-hubness reflects our effort to make hubness analysis and
hubness reduction readily available and easy-to-use for both machine learning
researchers and practitioners.

The package builds upon scikit-learn.
When feasible, their design decisions, code style, development practise etc. are
adopted, so that new users can work their way into scikit-hubness rapidly.
Workflows, therefore, comprise the well-known fit, predict, and score methods.

Two subpackages offer complementary functionality to scikit-learn:


	skhubness.analysis allows to estimate hubness in data


	skhubness.reduction provides hubness reduction algorithms




The skhubness.neighbors subpackage, on the other hand, acts as a drop-in
replacement for sklearn.neighbors. It provides all of its functionality,
and adds two major components:


	transparent hubness reduction


	approximate nearest neighbor (ANN) search




and combinations of both. From the coding point-of-view,
this is achieved by adding a handful new parameters to most classes
(KNeighborsClassifier,
RadiusNeighborRegressor,
NearestNeighbors,
etc).


	hubness defines the hubness reduction algorithm used to compute the nearest neighbor graph (kNNG).
Supported algorithms and corresponding parameter values are presented here,
and are available as a Python list in <skhubness.reduction.hubness_algorithms>.


	algorithm defines the kNNG construction algorithm similarly to the
way sklearn does it. That is, all of sklearn’s algorithms are available,
but in addition, several approximate nearest neighbor algorithms are provided as well.
See below for a list of
currently supported algorithms and their corresponding parameter values.




By providing the two arguments above, you select algorithms
for hubness reduction and nearest neighbor search, respectively.
Most of these algorithms can be further tuned by individual hyperparameters.
These are not explicitly made accessible in high-level classes  like KNeighborsClassifier,
in order to avoid very long lists of arguments,
because they differ from algorithm to algorithm.
Instead, two dictionaries


	hubness_params and


	algorithm_params




are available in all high-level classes to set the nested arguments
for ANN and hubness reduction methods.

The following example shows how to perform approximate hubness estimation
(1) without, and (2) with hubness reduction by local scaling
in an artificial data set.

In part 1, we estimate hubness in the original data.

from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1_000_000,
                           n_features=500,
                           n_informative=400,
                           random_state=123)

from sklearn.model_selection import train_test_split
X_train, X_test = train_test_split(X, test_size=0.1, random_state=456)

from skhubness.analysis import Hubness
hub = Hubness(k=10,
                   metric='euclidean',
                   algorithm='hnsw',
                   algorithm_params={'n_candidates': 100,
                                     'metric': 'euclidean',
                                     'post_processing': 2,
                                     },
                   return_value='robinhood',
                   n_jobs=8,
                   )
hub.fit(X_train)
robin_hood = hub.score(X_test)
print(robin_hood)
0.7873205555555555  # before hubness reduction





There is high hubness in this dataset. In part 2, we estimate hubness after reduction by local scaling.

hub = Hubness(k=10,
              metric='euclidean',
              hubness='local_scaling',
              hubness_params={'k': 7},
              algorithm='hnsw',
              algorithm_params={'n_candidates': 100,
                                'metric': 'euclidean',
                                'post_processing': 2,
                               },
              return_value='robinhood',
              verbose=2
              )
hub.fit(X_train)
robin_hood = hub.score(X_test)
print(robin_hood)
0.6614583333333331  # after hubness reduction








Approximate nearest neighbor search methods

Set the parameter algorithm to one of the following in order to enable ANN in
most of the classes from skhubness.neighbors or Hubness:


	‘hnsw’ uses hierarchical navigable small-world graphs (provided by the nmslib library)
in the wrapper class HNSW.


	‘lsh’ uses locality sensitive hashing (provided by the  puffinn library)
in the wrapper class PuffinnLSH.


	‘falconn_lsh’ uses locality sensitive hashing (provided by the falconn library)
in the wrapper class FalconnLSH.


	‘nng’ uses ANNG or ONNG (provided by the NGT library)
in the wrapper class NNG.


	‘rptree’ uses random projections trees (provided by the annoy library)
in the wrapper class RandomProjectionTree.




Configure parameters of the chosen algorithm with algorithm_params.
This dictionary is passed to the corresponding wrapper class.
Take a look at their documentation in order to see, which parameters are available
for each individual class.




Hubness reduction methods

Set the parameter hubness to one of the following identifiers
in order to use the corresponding hubness reduction algorithm:


	‘mp’ or ‘mutual_proximity’ use mutual proximity (Gaussian or empiric distribution)
as implemented in MutualProximity.


	‘ls’ or ‘local_scaling’ use local scaling or NICDM
as implemented in LocalScaling.


	‘dsl’ or ‘dis_sim_local’ use DisSim Local
as implemented in DisSimLocal.




Variants and additional parameters are set with the hubness_params dictionary.
Have a look at the individual hubness reduction classes for available parameters.




Approximate hubness reduction

Exact hubness reduction scales at least quadratically with the number of samples.
To reduce computational complexity, approximate hubness reduction can be applied,
as described in the paper “Fast approximate hubness reduction for large high-dimensional data”
(ICBK2018, on IEEE Xplore [https://ieeexplore.ieee.org/document/8588814],
also available as technical report [http://www.ofai.at/cgi-bin/tr-online?number+2018-02]).

The general idea behind approximate hubness reduction works as follows:


	retrieve n_candidates-nearest neighbors using an ANN method


	refine and reorder the candidate list by hubness reduction


	return n_neighbors nearest neighbors from the reordered candidate list




The procedure is implemented in scikit-hubness by simply passing both
algorithm and hubness parameters to the relevant classes.

Also consider passing algorithm_params={'n_candidates': n_candidates}.
Make sure to set the n_candidates high enough, for high sensitivity
(towards “good” nearest neighbors). Too large values may, however, lead
to long query times. As a rule of thumb for this trade-off, you can
start by retrieving ten times as many candidates as you need nearest neighbors.







            

          

      

      

    

  

    
      
          
            
  
Hubness analysis

You can use the skhubness.analysis subpackage
to assess whether your data is prone to hubness.
Currently, the Hubness class
acts as a one-stop-shop for hubness estimation.
It provides several hubness measures,
that are all computed from a nearest neighbor graph (kNNG).
More specifically, hubness is measured from k-occurrence,
that is, how often does an object occur in the k-nearest neighbor lists of other objects
(reverse nearest neighbors).
Traditionally, hubness has been measured by the skewness of the k-occurrence histogram,
where higher skewness to the right indicates higher hubness (due to objects that appear very
often as nearest neighbors).
Recently, additional indices borrowed from inequality research have been proposed for measuring hubness,
such as calculating the Robin Hood index or Gini index from k-occurrences,
which may have more desirable features w.r.t to large datasets and interpretability.

The Hubness class provides a variety of these measures.
It is based on scikit-learn’s BaseEstimator, and thus follows scikit-learn principles.
When a new instance is created, sensible default parameters are used,
unless specific choices are made.
Typically, the user may want to choose a parameter k to define the size
of nearest neighbor lists, or metric, in case the default Euclidean distances
do not fit the data well.
Parameter return_value defines which hubness measures to use.
VALID_HUBNESS_MEASURES
provides a list of available measures.
If return_values=='all', all available measures are computed.
The algorithm parameter defines how to compute the kNN graph.
This is especially relevant for large datasets, as it provides more efficient index
structures and approximate nearest neighbor algorithms.
For example, algorithm='hnsw' uses a hierarchical navigable small-world graph
to compute the hubness measures in log-linear time (instead of quadratic).

Hubness uses fit
and score methods to estimate hubness.
In this fictional example, we estimate hubness in terms of the Robin Hood index in some large dataset:

>>> X = (some large dataset)
>>> hub = Hubness(k=10,
>>>               return_value='robinhood',
>>>               algorithm='hnsw')
>>> hub.fit(X)  # Creates the HNSW index
>>> hub.score()
0.56





A Robin Hood index of 0.56 indicates,
that 56% of all slots in nearest neighbor lists would need to be redistributed,
in order to obtain equal k-occurrence for all objects.
We’d consider this rather high hubness.

In order to evaluate, whether hubness reduction might be beneficial
for downstream tasks (learning etc.),
we can perform the same estimation with hubness reduction enabled.
We use the same code as above, but add the hubness parameter:

>>> X = (some large dataset)
>>> hub = Hubness(k=10,
>>>               return_value='robinhood',
>>>               algorithm='hnsw',
>>>               hubness='local_scaling')
>>> hub.fit(X)
>>> hub.score()
0.35





Here, the hubness reduction method local scaling resulted in a markedly lower
Robin Hood index.

Note, that we used the complete data set X in the examples above.
We can also split the data into some X_train and X_test:

>>> hub.fit(X_train)
>>> hub.score(X_test)
0.36





This is useful, when you want to tune hyperparameters towards
low hubness, and prevent data leakage.


Hubness measures

The degree of hubness in a dataset typically measured from its k-occurrence histogram \(O^k\).
For an individual data object x, its k-occurrence \(O^k(x)\) is defined as the number of times
x resides among the k-nearest neighbors of all other objects in the data set.
In the notion of network analysis, \(O^k(x)\) is the indegree of x in a directed kNN graph.
It is also known as reverse neighbor count.

The following measures are provided in Hubness
by passing the corresponding argument values (e.g. hubness='robinhood'):


	‘k_skewness’: Skewness, the third central moment of the k-occurrence distribution,
as introduced by Radovanović et al. 2010 [http://www.jmlr.org/papers/v11/radovanovic10a.html]


	‘k_skewness_truncnorm’: skewness of truncated normal distribution estimated from k-occurrence distribution.


	‘atkinson’: the Atkinson index [https://en.wikipedia.org/wiki/Atkinson_index] of inequality,
which can be tuned in order to be more sensitive towards antihub or hubs.


	‘gini’: the Gini coefficient [https://en.wikipedia.org/wiki/Gini_coefficient] of inequality,
defined as the half of the relative mean absolute difference


	‘robinhood’: the Robin Hood or Hoover index [https://en.wikipedia.org/wiki/Hoover_index],
which gives the amount that needs to be redistributed in order to obtain equality
(e.g. proportion of total income, so that there is equal income for all;
or the number of nearest neighbor slot, so that all objects are among the k-nearest neighbors
of others exactly k times).


	‘antihubs’: returns the indices of antihubs in data set X (which are never
among the nearest neighbors of other objects.


	‘antihub_occurrence’: proportion of antihubs in the data set (percentage of total objects,
which are antihubs).


	‘hubs’:  indices of hub objects x in data set X
(with \(O^k(x) > \text{hub_size} * k\), where \(\text{hub_size} = 2\) by default).


	‘hub_occurrence’: proportion of nearest neighbor slots occupied by hubs


	‘groupie_ratio’: proportion of objects with the largest hub in their neighborhood


	‘k_neighbors’: indices to k-nearest neighbors for each object


	‘k_occurrence’: reverse neighbor count for each object


	‘all’: return a dictionary containing all of the above










            

          

      

      

    

  

    
      
          
            
  
Hubness reduction

The skhubness.reduction subpackage provides several hubness reduction methods.
Currently, the supported methods are


	Mutual proximity (independent Gaussian distance distribution),
provided by MutualProximity with method='normal' (default),


	Mutual proximity (empiric distance distribution),
provided by MutualProximity with method='empiric',


	Local scaling,
provided by LocalScaling with method='standard' (default),


	Non-iterative contextual dissimilarity measure,
provided by LocalScaling with method='nicdm',


	DisSim Local,
provided by DisSimLocal,




which represent the most successful hubness reduction methods as identified in
our paper “A comprehensive empirical comparison of hubness reduction in high-dimensional spaces”,
KAIS (2019), DOI [https://doi.org/10.1007/s10115-018-1205-y].
This survey paper also comes with an overview of how the individual methods work.

There are two ways to use perform hubness reduction in scikit-hubness:


	Implicitly, using the classes in skhubness.neighbors
(see User Guide: Nearest neighbors),


	Explicitly, using the classes in skhubness.reduction.




The former is the common approach, if you simply want to improve your learning task
by hubness reduction. Most examples here also do so.
The latter may, however, be more useful for researchers, who would like to
investigate the hubness phenomenon itself.

All hubness reducers inherit from a common base class
HubnessReduction.
This abstract class defines two important methods:
fit and
transform,
thus allowing to transform previously unseen data after the initial fit.
Most hubness reduction methods do not operate on vector data,
but manipulate pre-computed distances, in order to obtain secondary distances.
Therefore, fit and transform take neighbor graphs as input, instead of vectors.
Have a look at their signatures:

@abstractmethod
def fit(self, neigh_dist, neigh_ind, X, assume_sorted, *args, **kwargs):
    pass  # pragma: no cover

@abstractmethod
def transform(self, neigh_dist, neigh_ind, X, assume_sorted, return_distance=True):
    pass  # pragma: no cover





The arguments neigh_dist and neigh_ind are two arrays representing the nearest neighbor graph
with shape (n_indexed, n_neighbors) during fit, and
shape (n_query, n_neighbors) during transform.
The i-th row in each array corresponds to the i-th object in the data set.
The j-th column in neigh_ind contains the index of one of the k-nearest neighbors among the indexed objects,
while the j-th column in neigh_dist contains the corresponding distance.
Note, that this is the same format as obtained by scikit-learn’s kneighbors(return_distances=True)
method.

This way, the user has full flexibility on how to calculate primary distances (Euclidean, cosine, KL divergence, etc).
DisSimLocal (DSL) is the exception to this rule,
because it is formulated specifically for Euclidean distances.
DSL, therefore, also requires the training vectors in fit(..., X=X_train),
and the test set vectors in transform(..., X=X_test).
Argument X is ignored in the other hubness reduction methods.

When the neighbor graph is already sorted (lowest to highest distance),
assume_sorted=True should be set, so that hubness reduction methods
will not sort the arrays again, thus saving computational time.

Hubness reduction methods transform the primary distance graph,
and return secondary distances.
Note that for efficiency reasons, the returned arrays are not sorted.
Please make sure to sort the arrays, if downstream tasks assume sorted arrays.





            

          

      

      

    

  

    
      
          
            
  
Nearest neighbors

The skhubness.neighbors subpackage provides several neighbors-based learning methods.
It is designed as a drop-in replacement for scikit-learn’s neighbors.
The package provides all functionality from sklearn.neighbors,
and adds support for transparent hubness reduction, where applicable, including


	classification (e.g. KNeighborsClassifier),


	regression (e.g. RadiusNeighborsRegressor),


	unsupervised learning (e.g. NearestNeighbors),


	outlier detection (LocalOutlierFactor), and


	kNN graphs (kneighbors_graph).




In addition, scikit-hubness provides approximate nearest neighbor (ANN) search,
in order to support large data sets with millions of data objects and more.
A list of currently provided ANN methods is available
here.

Hubness reduction and ANN search can be used independently or in conjunction,
the latter yielding approximate hubness reduction.
User of scikit-learn will find that only minor modification of their code
is required to enable one or both of the above.
We describe how to do so here.

For general information and details about nearest neighbors,
we refer to the excellent scikit-learn
User Guide on Nearest Neighbors [https://scikit-learn.org/stable/modules/neighbors.html].





            

          

      

      

    

  

    
      
          
            
  
Examples

In this section, we provide usage examples for skhubness.


Contents:


	Example: Hubness reduction




	Example: Approximate nearest neighbor search

	Example: Approximate hubness reduction




	Example: From sklearn to skhubness












            

          

      

      

    

  

    
      
          
            
  
Example: Hubness reduction

These examples show how to perform hubness reduction in kNN classification
in (nested) cross-validation and pipelines.


[image: Example: skhubness in Pipelines]
Example: skhubness in Pipelines








[image: Face recognition (Olivetti faces)]
Face recognition (Olivetti faces)










Download all examples in Python source code: auto_examples_hr_python.zip




Download all examples in Jupyter notebooks: auto_examples_hr_jupyter.zip





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here     to download the full example code




Example: skhubness in Pipelines

Estimators from scikit-hubness can - of course - be used in a scikit-learn Pipeline.
In this example, we select the best hubness reduction method and several other
hyperparameters in grid search w.r.t. to classification performance.

from sklearn.datasets import make_classification
from sklearn.decomposition import PCA
from sklearn.model_selection import StratifiedKFold, train_test_split, GridSearchCV
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler

from skhubness.neighbors import KNeighborsClassifier

# Not so high-dimensional data
X, y = make_classification(n_samples=1_000,
                           n_features=50,
                           n_informative=20,
                           n_classes=2,
                           random_state=3453)

X, X_test, y, y_test = train_test_split(X, y,
                                        test_size=100,
                                        stratify=y,
                                        shuffle=True,
                                        random_state=124)

# Pipeline of standardization, dimensionality reduction, and kNN classification
pipe = Pipeline([('scale', StandardScaler(with_mean=True, with_std=True)),
                 ('pca', PCA(n_components=20, random_state=1213)),
                 ('knn', KNeighborsClassifier(n_neighbors=10, algorithm='lsh', hubness='mp'))])

# Exhaustive search for best algorithms and hyperparameters
param_grid = {'pca__n_components': [10, 20, 30],
              'knn__n_neighbors': [5, 10, 20],
              'knn__algorithm': ['auto', 'hnsw', 'lsh', 'falconn_lsh', 'nng', 'rptree'],
              'knn__hubness': [None, 'mp', 'ls', 'dsl']}
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=1354)
search = GridSearchCV(pipe, param_grid, n_jobs=5, cv=cv, verbose=1)
search.fit(X, y)

# Performance on hold-out data
acc = search.score(y_test, y_test)
print(acc)
# 0.79

print(search.best_params_)
# {'knn__algorithm': 'auto',
#  'knn__hubness': 'dsl',
#  'knn__n_neighbors': 20,
#  'pca__n_components': 30}





Total running time of the script: ( 0 minutes  0.000 seconds)



Download Python source code: pipelines.py




Download Jupyter notebook: pipelines.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here     to download the full example code




Face recognition (Olivetti faces)

This dataset contains a set of face images taken between April 1992
and April 1994 at AT&T Laboratories Cambridge.
Image data is typically embedded in very high-dimensional spaces,
which might be prone to hubness.

import numpy as np
from sklearn.datasets import olivetti_faces
from sklearn.model_selection import cross_val_score, StratifiedKFold, RandomizedSearchCV

from skhubness import Hubness
from skhubness.neighbors import KNeighborsClassifier

# Fetch data and have a look
d = olivetti_faces.fetch_olivetti_faces()
X, y = d['data'], d['target']
print(f'Data shape: {X.shape}')
print(f'Label shape: {y.shape}')
# (400, 4096)
# (400,)

# The data is embedded in a high-dimensional space.
# Is there hubness, and can we reduce it?
for hubness in [None, 'dsl', 'ls', 'mp']:
    hub = Hubness(k=10, hubness=hubness, return_value='k_skewness')
    hub.fit(X)
    score = hub.score()
    print(f'Hubness (10-skew): {score:.3f} with hubness reduction: {hubness}')
# Hubness (10-skew): 1.972 with hubness reduction: None
# Hubness (10-skew): 1.526 with hubness reduction: dsl
# Hubness (10-skew): 0.943 with hubness reduction: ls
# Hubness (10-skew): 0.184 with hubness reduction: mp

# There is some hubness, and all hubness reduction methods can reduce it (to varying degree)
# Let's assess the best kNN strategy and its estimated performance.
cv_perf = StratifiedKFold(n_splits=5, shuffle=True, random_state=7263)
cv_select = StratifiedKFold(n_splits=5, shuffle=True, random_state=32634)

knn = KNeighborsClassifier(algorithm_params={'n_candidates': 100})

# specify parameters and distributions to sample from
param_dist = {"n_neighbors": np.arange(1, 26),
              "weights": ['uniform', 'distance'],
              "hubness": [None, 'dsl', 'ls', 'mp']}

# Inner cross-validation to select best hyperparameters (incl hubness reduction method)
search = RandomizedSearchCV(estimator=knn,
                            param_distributions=param_dist,
                            n_iter=100,
                            cv=cv_select,
                            random_state=2345,
                            verbose=1)

# Outer cross-validation to estimate performance
score = cross_val_score(search, X, y, cv=cv_perf, verbose=1)
print(f'Scores: {score}')
print(f'Mean acc = {score.mean():.3f} +/- {score.std():.3f}')

# Select model that maximizes accuracy
search.fit(X, y)

# The best model's parameters
print(search.best_params_)

# Does it correspond to the results of hubness reduction above?
# Scores: [0.95   0.9625 1.     0.95   0.925 ]
# Mean acc = 0.957 +/- 0.024
# {'weights': 'distance', 'n_neighbors': 23, 'hubness': 'mp'}





Total running time of the script: ( 0 minutes  0.000 seconds)



Download Python source code: olivetti_faces.py




Download Jupyter notebook: olivetti_faces.ipynb
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Example: Approximate nearest neighbor search

This example shows how to perform approximate nearest neighbor search.


[image: Retrieving GLOVE word vectors]
Retrieving GLOVE word vectors










Download all examples in Python source code: auto_examples_ann_python.zip




Download all examples in Jupyter notebooks: auto_examples_ann_jupyter.zip
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Note

Click here     to download the full example code




Retrieving GLOVE word vectors

In this example we will retrieve similar words from
GLOVE embeddings with an ANNG graph.

Precomputed ground-truth nearest neighbors are available
from ANN benchmarks [http://ann-benchmarks.com/index.html#datasets].

# For this example, the `h5py` package is required in addition to the requirements of scikit-hubness.
# You may install it from PyPI by the following command (if you're in an IPython/Jupyter environment):
# !pip install h5py

import numpy as np
import h5py
from skhubness.neighbors import NearestNeighbors

# Download the dataset with the following command.
# If the dataset is already available in the current working dir, you can skip this:
# !wget http://ann-benchmarks.com/glove-100-angular.hdf5
f = h5py.File('glove-100-angular.hdf5', 'r')

# Extract the split and ground-truth
X_train = f['train']
X_test = f['test']
neigh_true = f['neighbors']
dist = f['distances']

# How many object have we got?
for k in f.keys():
    print(f'{k}: shape = {f[k].shape}')

# APPROXIMATE NEAREST NEIGHBOR SEARCH
# In order to retrieve most similar words from the GLOVE embeddings,
# we use the unsupervised `skhubness.neighbors.NearestNeighbors` class.
# The (approximate) nearest neighbor algorithm is set to NNG by passing `algorithm='nng'`.
# We can pass additional parameters to `NNG` via the `algorithm_params` dict.
# Here we set `n_jobs=8` to enable parallelism.
# Create the nearest neighbor index
nn_plain = NearestNeighbors(n_neighbors=100,
                            algorithm='nng',
                            algorithm_params={'n_candidates': 1_000,
                                              'index_dir': 'auto',
                                              'n_jobs': 8},
                            verbose=2,
                            )
nn_plain.fit(X_train)

# Note that NNG must save its index. By setting `index_dir='auto'`,
# NNG will try to save it to shared memory, if available, otherwise to $TMP.
# This index is NOT removed automatically, as one will typically want build an index once and use it often.
# Retrieve nearest neighbors for each test object
neigh_pred_plain = nn_plain.kneighbors(X_test,
                                       n_neighbors=100,
                                       return_distance=False)

# Calculate the recall per test object
recalled_plain = [np.intersect1d(neigh_true[i], neigh_pred_plain)
                  for i in range(len(X_test))]
recall_plain = np.array([recalled_plain[i].size / neigh_true.shape[1]
                         for i in range(len(X_test))])

# Statistics
print(f'Mean = {recall_plain.mean():.4f}, '
      f'stdev = {recall_plain.std():.4f}')


# ANN with HUBNESS REDUCTION
# Here we set `n_candidates=1000`, so that for each query,
# 1000 neighbors will be retrieved first by `NNG`,
# that are subsequently refined by hubness reduction.
# Hubness reduction is performed by local scaling as specified with `hubness='ls'`.
# Creating the NN index with hubness reduction enabled
nn = NearestNeighbors(n_neighbors=100,
                      algorithm='nng',
                      algorithm_params={'n_candidates': 1_000,
                                        'n_jobs': 8},
                      hubness='ls',
                      verbose=2,
                      )
nn.fit(X_train)

# Retrieve nearest neighbors for each test object
neigh_pred = nn.kneighbors(X_test,
                           n_neighbors=100,
                           return_distance=False)

# Measure recall per object and on average
recalled = [np.intersect1d(neigh_true[i], neigh_pred)
            for i in range(len(X_test))]
recall = np.array([recalled[i].size / neigh_true.shape[1]
                   for i in range(len(X_test))])
print(f'Mean = {recall.mean():.4f}, '
      f'stdev = {recall.std():.4f}')

# If the second results are significantly better than the first,
# this could indicate that the chosen ANN method is more prone
# to hubness than exact NN, which might be an interesting research question.





Total running time of the script: ( 0 minutes  0.000 seconds)



Download Python source code: word_embeddings.py




Download Jupyter notebook: word_embeddings.ipynb
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Example: Approximate hubness reduction

These examples show how to combine approximate nearest neighbor search and hubness reduction.


[image: Example: Reusing index structures]
Example: Reusing index structures








[image: Example: Approximate hubness reduction]
Example: Approximate hubness reduction










Download all examples in Python source code: auto_examples_ahr_python.zip




Download all examples in Jupyter notebooks: auto_examples_ahr_jupyter.zip
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Click here     to download the full example code




Example: Reusing index structures

This example shows how to reuse index structures. If you want to first estimate hubness,
and then perform kNN, you can avoid recomputing the ANN index structure, which can be
costly.

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

from skhubness.analysis import Hubness
from skhubness.neighbors import KNeighborsClassifier

X, y = make_classification(n_samples=100_000,
                           n_features=500,
                           n_informative=400,
                           random_state=543)

X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=0.01,
                                                    stratify=y,
                                                    shuffle=True,
                                                    random_state=2346)

# Approximate hubness estimation: Creates LSH index and computes local scaling factors
hub = Hubness(k=10,
              return_value='robinhood',
              algorithm='falconn_lsh',
              hubness='ls',
              random_state=2345,
              shuffle_equal=False,
              verbose=1)
hub.fit(X_train)

robin_hood = hub.score(X_test)
print(f'Hubness (Robin Hood): {robin_hood}:.4f')
# 0.9060

# Approximate hubness reduction for classification: Reuse index & factors
knn = KNeighborsClassifier(n_neighbor=10,
                           algorithm='falconn_lsh',
                           hubness='ls',
                           n_jobs=1)

knn.fit(hub.nn_index_, y_train)  # REUSE INDEX HERE
acc = knn.score(X_test, y_test)
print(f'Test accuracy: {acc:.3f}')
# 0.959





Total running time of the script: ( 0 minutes  0.000 seconds)



Download Python source code: reusing_index.py




Download Jupyter notebook: reusing_index.ipynb
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Click here     to download the full example code




Example: Approximate hubness reduction

This example shows how to combine approximate nearest neighbor search and hubness reduction
in order to perform approximate hubness reduction for large data sets.

from sklearn.datasets import make_classification
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split

from skhubness.analysis import Hubness
from skhubness.neighbors import KNeighborsClassifier

# High-dimensional artificial data
X, y = make_classification(n_samples=1_000_000,
                           n_features=500,
                           n_informative=400,
                           random_state=543)

X_train, X_test, y_train, y_test = train_test_split(X, y,
                                                    test_size=10_000,
                                                    stratify=y,
                                                    shuffle=True,
                                                    random_state=2346)

# Approximate hubness estimation
hub = Hubness(k=10,
              return_value='robinhood',
              algorithm='hnsw',
              random_state=2345,
              shuffle_equal=False,
              n_jobs=-1,
              verbose=2)
hub.fit(X_train)
robin_hood = hub.score(X_test)
print(f'Hubness (Robin Hood): {robin_hood:.3f}')
# 0.944

# Approximate hubness reduction for classification
knn = KNeighborsClassifier(n_neighbor=10,
                           algorithm='hnsw',
                           hubness='ls',
                           n_jobs=-1,
                           verbose=2)

knn.fit(X_train, y_train)
y_pred = knn.predict(X_test)
acc = accuracy_score(y_test, y_pred)
print(f'Test accuracy: {acc:.3f}')
# Test accuracy: 0.987





Total running time of the script: ( 0 minutes  0.000 seconds)



Download Python source code: high_dim_gaussian.py




Download Jupyter notebook: high_dim_gaussian.ipynb
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scikit-learn examples adapted for scikit-hubness

Examples concerning using skhubness.neighbors
as drop-in replacement for sklearn.neighbors.

These examples are taken from scikit-learn and demonstrate the ease of transition
from sklearn.neighbors to skhubness.neighbors.
You will find that many examples require no more than modifying an import line,
and/or adding one argument when instantiating an estimator.

Note, that these examples are not intended to demonstrate improved learning performance
due to hubness reduction (the data are rather low-dimensional).


[image: Nearest Neighbors regression]
Nearest Neighbors regression








[image: Nearest Centroid Classification]
Nearest Centroid Classification








[image: Nearest Neighbors Classification]
Nearest Neighbors Classification








[image: Dimensionality Reduction with Neighborhood Components Analysis]
Dimensionality Reduction with Neighborhood Components Analysis








[image: Face completion with a multi-output estimators]
Face completion with a multi-output estimators








[image: Comparing Nearest Neighbors with and without Neighborhood Components Analysis]
Comparing Nearest Neighbors with and without Neighborhood Components Analysis








[image: Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...]
Manifold learning on handwritten digits: Locally Linear Embedding, Isomap…










Download all examples in Python source code: auto_examples_python.zip




Download all examples in Jupyter notebooks: auto_examples_jupyter.zip
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Click here to download the full example code




Nearest Neighbors regression

Demonstrate the resolution of a regression problem
using a k-Nearest Neighbor and the interpolation of the
target using both barycenter and constant weights.

Hubness reduction of this low-dimensional dataset
shows only small effects.

Adapted from https://scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html

[image: ../../_images/sphx_glr_plot_regression_001.png]
Out:

/home/user/feldbauer/PycharmProjects/hubness/examples/sklearn/plot_regression.py:60: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
  plt.show()











print(__doc__)

# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>
#         Fabian Pedregosa <fabian.pedregosa@inria.fr>
#
# License: BSD 3 clause (C) INRIA


# #############################################################################
# Generate sample data
import numpy as np
import matplotlib.pyplot as plt
from skhubness.neighbors import KNeighborsRegressor

np.random.seed(0)
X = np.sort(5 * np.random.rand(40, 1), axis=0)
T = np.linspace(0, 5, 500)[:, np.newaxis]
y = np.sin(X).ravel()

# Add noise to targets
y[::5] += 1 * (0.5 - np.random.rand(8))

# #############################################################################
# Fit regression model
n_neighbors = 5

f = plt.figure()
for i, weights in enumerate(['uniform', 'distance']):
    for j, hubness in enumerate([None, 'local_scaling']):
        knn = KNeighborsRegressor(n_neighbors,
                                  algorithm_params={'n_candidates': 39},
                                  weights=weights,
                                  hubness=hubness)
        y_ = knn.fit(X, y).predict(T)

        plt.subplot(2, 2, i * 2 + j + 1)
        f.set_figheight(15)
        f.set_figwidth(15)
        plt.scatter(X, y, c='k', label='data')
        plt.plot(T, y_, c='g', label='prediction')
        plt.axis('tight')
        plt.legend()
        plt.title(f"KNeighborsRegressor (k = {n_neighbors}, weights = '{weights}', hubness = '{hubness}')")

plt.tight_layout()
plt.show()





Total running time of the script: ( 0 minutes  0.737 seconds)



Download Python source code: plot_regression.py




Download Jupyter notebook: plot_regression.ipynb
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Click here to download the full example code




Nearest Centroid Classification

Sample usage of Nearest Centroid classification.
It will plot the decision boundaries for each class.

Note that no hubness reduction is currently implemented for centroids.
However, hubness.neighbors retains all the features of sklearn.neighbors,
in order to act as a full drop-in replacement.

Adapted from https://scikit-learn.org/stable/auto_examples/neighbors/plot_nearest_centroid.html


	[image: ../../_images/sphx_glr_plot_nearest_centroid_001.png]


	[image: ../../_images/sphx_glr_plot_nearest_centroid_002.png]




Out:

None 0.8133333333333334
0.2 0.82
/home/user/feldbauer/PycharmProjects/hubness/examples/sklearn/plot_nearest_centroid.py:64: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
  plt.show()











print(__doc__)

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from skhubness.neighbors import NearestCentroid

n_neighbors = 15

# import some data to play with
iris = datasets.load_iris()
# we only take the first two features. We could avoid this ugly
# slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target

h = .02  # step size in the mesh

# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

for shrinkage in [None, .2]:
    # we create an instance of Neighbours Classifier and fit the data.
    clf = NearestCentroid(shrink_threshold=shrinkage)
    clf.fit(X, y)
    y_pred = clf.predict(X)
    print(shrinkage, np.mean(y == y_pred))
    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, x_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,
                edgecolor='k', s=20)
    plt.title("3-Class classification (shrink_threshold=%r)"
              % shrinkage)
    plt.axis('tight')

plt.show()





Total running time of the script: ( 0 minutes  0.737 seconds)



Download Python source code: plot_nearest_centroid.py




Download Jupyter notebook: plot_nearest_centroid.ipynb
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Note

Click here to download the full example code




Nearest Neighbors Classification

Sample usage of Nearest Neighbors classification.
It will plot the decision boundaries for each class.

Adapted from https://scikit-learn.org/stable/auto_examples/neighbors/plot_classification.html


	[image: ../../_images/sphx_glr_plot_classification_001.png]


	[image: ../../_images/sphx_glr_plot_classification_002.png]




Out:

/home/user/feldbauer/PycharmProjects/hubness/examples/sklearn/plot_classification.py:61: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
  plt.show()











import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from skhubness.neighbors import KNeighborsClassifier

n_neighbors = 15

# import some data to play with
iris = datasets.load_iris()

# we only take the first two features. We could avoid this ugly
# slicing by using a two-dim dataset
X = iris.data[:, :2]
y = iris.target

h = .02  # step size in the mesh

# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

for hubness in [None, 'mutual_proximity']:
    # we create an instance of Neighbours Classifier and fit the data.
    clf = KNeighborsClassifier(n_neighbors,
                               hubness=hubness,
                               weights='distance')
    clf.fit(X, y)

    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, x_max]x[y_min, y_max].
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light)

    # Plot also the training points
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold,
                edgecolor='k', s=20)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("3-Class classification (k = %i, hubness = '%s')"
              % (n_neighbors, hubness))

plt.show()





Total running time of the script: ( 0 minutes  25.940 seconds)



Download Python source code: plot_classification.py




Download Jupyter notebook: plot_classification.ipynb
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Click here to download the full example code




Dimensionality Reduction with Neighborhood Components Analysis

Sample usage of Neighborhood Components Analysis for dimensionality reduction.

This example compares different (linear) dimensionality reduction methods
applied on the Digits data set. The data set contains images of digits from
0 to 9 with approximately 180 samples of each class. Each image is of
dimension 8x8 = 64, and is reduced to a two-dimensional data point.

Principal Component Analysis (PCA) applied to this data identifies the
combination of attributes (principal components, or directions in the
feature space) that account for the most variance in the data. Here we
plot the different samples on the 2 first principal components.

Linear Discriminant Analysis (LDA) tries to identify attributes that
account for the most variance between classes. In particular,
LDA, in contrast to PCA, is a supervised method, using known class labels.

Neighborhood Components Analysis (NCA) tries to find a feature space such
that a stochastic nearest neighbor algorithm will give the best accuracy.
Like LDA, it is a supervised method.

One can see that NCA enforces a clustering of the data that is visually
meaningful despite the large reduction in dimension.

Adapted from https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_dim_reduction.html


	[image: ../../_images/sphx_glr_plot_nca_dim_reduction_001.png]


	[image: ../../_images/sphx_glr_plot_nca_dim_reduction_002.png]


	[image: ../../_images/sphx_glr_plot_nca_dim_reduction_003.png]




Out:

/home/user/feldbauer/miniconda3/envs/hubness/lib/python3.7/site-packages/sklearn/discriminant_analysis.py:388: UserWarning: Variables are collinear.
  warnings.warn("Variables are collinear.")
/home/user/feldbauer/miniconda3/envs/hubness/lib/python3.7/site-packages/sklearn/discriminant_analysis.py:388: UserWarning: Variables are collinear.
  warnings.warn("Variables are collinear.")
/home/user/feldbauer/PycharmProjects/hubness/examples/sklearn/plot_nca_dim_reduction.py:103: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
  plt.show()











# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler

from skhubness.neighbors import (KNeighborsClassifier,
                                 NeighborhoodComponentsAnalysis)

print(__doc__)

n_neighbors = 3
random_state = 0

# Load Digits dataset
digits = datasets.load_digits()
X, y = digits.data, digits.target

# Split into train/test
X_train, X_test, y_train, y_test = \
    train_test_split(X, y, test_size=0.5, stratify=y,
                     random_state=random_state)

dim = len(X[0])
n_classes = len(np.unique(y))

# Reduce dimension to 2 with PCA
pca = make_pipeline(StandardScaler(),
                    PCA(n_components=2, random_state=random_state))

# Reduce dimension to 2 with LinearDiscriminantAnalysis
lda = make_pipeline(StandardScaler(),
                    LinearDiscriminantAnalysis(n_components=2))

# Reduce dimension to 2 with NeighborhoodComponentAnalysis
nca = make_pipeline(StandardScaler(),
                    NeighborhoodComponentsAnalysis(n_components=2,
                                                   random_state=random_state))

# Use a nearest neighbor classifier to evaluate the methods
knn = KNeighborsClassifier(n_neighbors=n_neighbors)

# Make a list of the methods to be compared
dim_reduction_methods = [('PCA', pca), ('LDA', lda), ('NCA', nca)]

# plt.figure()
for i, (name, model) in enumerate(dim_reduction_methods):
    plt.figure()
    # plt.subplot(1, 3, i + 1, aspect=1)

    # Fit the method's model
    model.fit(X_train, y_train)

    # Fit a nearest neighbor classifier on the embedded training set
    knn.fit(model.transform(X_train), y_train)

    # Compute the nearest neighbor accuracy on the embedded test set
    acc_knn = knn.score(model.transform(X_test), y_test)

    # Embed the data set in 2 dimensions using the fitted model
    X_embedded = model.transform(X)

    # Plot the projected points and show the evaluation score
    plt.scatter(X_embedded[:, 0], X_embedded[:, 1], c=y, s=30, cmap='Set1')
    plt.title("{}, KNN (k={})\nTest accuracy = {:.2f}".format(name,
                                                              n_neighbors,
                                                              acc_knn))
plt.show()





Total running time of the script: ( 0 minutes  5.249 seconds)



Download Python source code: plot_nca_dim_reduction.py




Download Jupyter notebook: plot_nca_dim_reduction.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here to download the full example code




Face completion with a multi-output estimators

This example shows the use of multi-output estimator to complete images.
The goal is to predict the lower half of a face given its upper half.

The first column of images shows true faces. The next columns illustrate
how extremely randomized trees, linear regression, ridge regression,
and k nearest neighbors with or without hubness reduction
complete the lower half of those faces.

Adapted from https://scikit-learn.org/stable/auto_examples/plot_multioutput_face_completion.html

[image: ../../_images/sphx_glr_plot_multioutput_face_completion_001.png]
Out:

/home/user/feldbauer/PycharmProjects/hubness/examples/sklearn/plot_multioutput_face_completion.py:106: UserWarning: Matplotlib is currently using agg, which is a non-GUI backend, so cannot show the figure.
  plt.show()











print(__doc__)

import numpy as np
import matplotlib.pyplot as plt

from sklearn.datasets import fetch_olivetti_faces
from sklearn.utils.validation import check_random_state

from sklearn.ensemble import ExtraTreesRegressor
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import RidgeCV

from skhubness.neighbors import KNeighborsRegressor

# Load the faces datasets
data = fetch_olivetti_faces()
targets = data.target

data = data.images.reshape((len(data.images), -1))
train = data[targets < 30]
test = data[targets >= 30]  # Test on independent people

# Test on a subset of people
n_faces = 5
rng = check_random_state(4)
face_ids = rng.randint(test.shape[0], size=(n_faces, ))
test = test[face_ids, :]

n_pixels = data.shape[1]
# Upper half of the faces
X_train = train[:, :(n_pixels + 1) // 2]
# Lower half of the faces
y_train = train[:, n_pixels // 2:]
X_test = test[:, :(n_pixels + 1) // 2]
y_test = test[:, n_pixels // 2:]

# Fit estimators
ESTIMATORS = {
    "Extra trees": ExtraTreesRegressor(n_estimators=10, max_features=32,
                                       random_state=0),
    "k-NN": KNeighborsRegressor(weights='distance'),
    "k-NN MP": KNeighborsRegressor(hubness='mp',
                                   hubness_params={'method': 'normal'},
                                   weights='distance'),
    "Linear regression": LinearRegression(),
    "Ridge": RidgeCV(),
}

y_test_predict = dict()
for name, estimator in ESTIMATORS.items():
    estimator.fit(X_train, y_train)
    y_test_predict[name] = estimator.predict(X_test)

# Plot the completed faces
image_shape = (64, 64)

n_cols = 1 + len(ESTIMATORS)
plt.figure(figsize=(2. * n_cols, 2.26 * n_faces))
plt.suptitle("Face completion with multi-output estimators", size=16)

for i in range(n_faces):
    true_face = np.hstack((X_test[i], y_test[i]))

    if i:
        sub = plt.subplot(n_faces, n_cols, i * n_cols + 1)
    else:
        sub = plt.subplot(n_faces, n_cols, i * n_cols + 1,
                          title="true faces")

    sub.axis("off")
    sub.imshow(true_face.reshape(image_shape),
               cmap=plt.cm.gray,
               interpolation="nearest")

    for j, est in enumerate(sorted(ESTIMATORS)):
        completed_face = np.hstack((X_test[i], y_test_predict[est][i]))

        if i:
            sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j)

        else:
            sub = plt.subplot(n_faces, n_cols, i * n_cols + 2 + j,
                              title=est)

        sub.axis("off")
        sub.imshow(completed_face.reshape(image_shape),
                   cmap=plt.cm.gray,
                   interpolation="nearest")

plt.show()





Total running time of the script: ( 0 minutes  3.385 seconds)



Download Python source code: plot_multioutput_face_completion.py




Download Jupyter notebook: plot_multioutput_face_completion.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here to download the full example code




Comparing Nearest Neighbors with and without Neighborhood Components Analysis

An example comparing nearest neighbors classification with and without
Neighborhood Components Analysis.

It will plot the class decision boundaries given by a Nearest Neighbors
classifier when using the Euclidean distance on the original features, versus
using the Euclidean distance after the transformation learned by Neighborhood
Components Analysis. The latter aims to find a linear transformation that
maximises the (stochastic) nearest neighbor classification accuracy on the
training set.

Adapted from https://scikit-learn.org/stable/auto_examples/neighbors/plot_nca_classification.html


	[image: ../../_images/sphx_glr_plot_nca_classification_001.png]


	[image: ../../_images/sphx_glr_plot_nca_classification_002.png]


	[image: ../../_images/sphx_glr_plot_nca_classification_003.png]


	[image: ../../_images/sphx_glr_plot_nca_classification_004.png]


	[image: ../../_images/sphx_glr_plot_nca_classification_005.png]


	[image: ../../_images/sphx_glr_plot_nca_classification_006.png]




Out:













# License: BSD 3 clause

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline

from skhubness.neighbors import (KNeighborsClassifier,
                                 NeighborhoodComponentsAnalysis)
import warnings
warnings.filterwarnings('ignore')

print(__doc__)

n_neighbors = 1

dataset = datasets.load_iris()
X, y = dataset.data, dataset.target

# we only take two features. We could avoid this ugly
# slicing by using a two-dim dataset
X = X[:, [0, 2]]

X_train, X_test, y_train, y_test = \
    train_test_split(X, y, stratify=y, test_size=0.7, random_state=42)

h = .01  # step size in the mesh

# Create color maps
cmap_light = ListedColormap(['#FFAAAA', '#AAFFAA', '#AAAAFF'])
cmap_bold = ListedColormap(['#FF0000', '#00FF00', '#0000FF'])

names = ['KNN',
         'NCA, KNN',
         'KNN, MP (normal)',
         'KNN, MP (empiric)',
         'KNN, LS (standard)',
         'KNN, LS (nicdm)',
        ]

classifiers = [Pipeline([('scaler', StandardScaler()),
                         ('knn', KNeighborsClassifier(n_neighbors=n_neighbors))
                         ]),
               Pipeline([('scaler', StandardScaler()),
                         ('nca', NeighborhoodComponentsAnalysis()),
                         ('knn', KNeighborsClassifier(n_neighbors=n_neighbors))
                         ]),
               Pipeline([('scaler', StandardScaler()),
                         ('knn', KNeighborsClassifier(n_neighbors=n_neighbors,
                                                      hubness='mutual_proximity',
                                                      hubness_params={'method': 'normal'}))
                         ]),
               Pipeline([('scaler', StandardScaler()),
                         ('knn', KNeighborsClassifier(n_neighbors=n_neighbors,
                                                      hubness='mutual_proximity',
                                                      hubness_params={'method': 'empiric'}))
                         ]),
               Pipeline([('scaler', StandardScaler()),
                         ('knn', KNeighborsClassifier(n_neighbors=n_neighbors,
                                                      hubness='local_scaling',
                                                      hubness_params={'method': 'standard'}))
                         ]),
               Pipeline([('scaler', StandardScaler()),
                         ('knn', KNeighborsClassifier(n_neighbors=n_neighbors,
                                                      hubness='local_scaling',
                                                      hubness_params={'method': 'nicdm'}))
                         ]),
               ]

x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                     np.arange(y_min, y_max, h))

for name, clf in zip(names, classifiers):

    clf.fit(X_train, y_train)
    score = clf.score(X_test, y_test)

    # Plot the decision boundary. For that, we will assign a color to each
    # point in the mesh [x_min, x_max]x[y_min, y_max].
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    plt.figure()
    plt.pcolormesh(xx, yy, Z, cmap=cmap_light, alpha=.8)

    # Plot also the training and testing points
    plt.scatter(X[:, 0], X[:, 1], c=y, cmap=cmap_bold, edgecolor='k', s=20)
    plt.xlim(xx.min(), xx.max())
    plt.ylim(yy.min(), yy.max())
    plt.title("{} (k = {})".format(name, n_neighbors))
    plt.text(0.9, 0.1, '{:.2f}'.format(score), size=15,
             ha='center', va='center', transform=plt.gca().transAxes)

plt.show()





Total running time of the script: ( 6 minutes  19.660 seconds)



Download Python source code: plot_nca_classification.py




Download Jupyter notebook: plot_nca_classification.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here to download the full example code




Manifold learning on handwritten digits: Locally Linear Embedding, Isomap…

An illustration of various embeddings on the digits dataset.

The RandomTreesEmbedding, from the sklearn.ensemble module, is not
technically a manifold embedding method, as it learn a high-dimensional
representation on which we apply a dimensionality reduction method.
However, it is often useful to cast a dataset into a representation in
which the classes are linearly-separable.

t-SNE will be initialized with the embedding that is generated by PCA in
this example, which is not the default setting. It ensures global stability
of the embedding, i.e., the embedding does not depend on random
initialization.

Linear Discriminant Analysis, from the sklearn.discriminant_analysis
module, and Neighborhood Components Analysis, from the sklearn.neighbors
module, are supervised dimensionality reduction method, i.e. they make use of
the provided labels, contrary to other methods.

Adapted from https://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
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	[image: ../../_images/sphx_glr_plot_lle_digits_002.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_003.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_004.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_005.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_006.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_007.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_008.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_009.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_010.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_011.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_012.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_013.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_014.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_015.png]


	[image: ../../_images/sphx_glr_plot_lle_digits_016.png]




Out:

Computing random projection
Computing PCA projection
Computing Linear Discriminant Analysis projection
Computing Isomap projection
Done.
Computing LLE embedding
Done. Reconstruction error: 1.63545e-06
Computing modified LLE embedding
Done. Reconstruction error: 0.360653
Computing Hessian LLE embedding
Done. Reconstruction error: 0.2128
Computing LTSA embedding
Done. Reconstruction error: 0.2128
Computing MDS embedding
Done. Stress: 135359737.175700
Computing MDS embedding from local scaling neighbors graph
Done. Stress: 89610.656628
Computing MDS embedding from mutual proximity graph
Done. Stress: 25752.919623
Computing Totally Random Trees embedding
Computing Spectral embedding
Computing t-SNE embedding
Computing NCA projection











# Authors: Fabian Pedregosa <fabian.pedregosa@inria.fr>
#          Olivier Grisel <olivier.grisel@ensta.org>
#          Mathieu Blondel <mathieu@mblondel.org>
#          Gael Varoquaux
#          Roman Feldbauer
# License: BSD 3 clause (C) INRIA 2011

print(__doc__)
from time import time

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import offsetbox
from sklearn import (manifold, datasets, decomposition, ensemble,
                     discriminant_analysis, random_projection)
from skhubness import neighbors

digits = datasets.load_digits(n_class=6)
X = digits.data
y = digits.target
n_samples, n_features = X.shape
n_neighbors = 30


# ----------------------------------------------------------------------
# Scale and visualize the embedding vectors
def plot_embedding(X, title=None):
    x_min, x_max = np.min(X, 0), np.max(X, 0)
    X = (X - x_min) / (x_max - x_min)

    plt.figure()
    ax = plt.subplot(111)
    for i in range(X.shape[0]):
        plt.text(X[i, 0], X[i, 1], str(y[i]),
                 color=plt.cm.Set1(y[i] / 10.),
                 fontdict={'weight': 'bold', 'size': 9})

    if hasattr(offsetbox, 'AnnotationBbox'):
        # only print thumbnails with matplotlib > 1.0
        shown_images = np.array([[1., 1.]])  # just something big
        for i in range(X.shape[0]):
            dist = np.sum((X[i] - shown_images) ** 2, 1)
            if np.min(dist) < 4e-3:
                # don't show points that are too close
                continue
            shown_images = np.r_[shown_images, [X[i]]]
            imagebox = offsetbox.AnnotationBbox(
                offsetbox.OffsetImage(digits.images[i], cmap=plt.cm.gray_r),
                X[i])
            ax.add_artist(imagebox)
    plt.xticks([]), plt.yticks([])
    if title is not None:
        plt.title(title)


# ----------------------------------------------------------------------
# Plot images of the digits
n_img_per_row = 20
img = np.zeros((10 * n_img_per_row, 10 * n_img_per_row))
for i in range(n_img_per_row):
    ix = 10 * i + 1
    for j in range(n_img_per_row):
        iy = 10 * j + 1
        img[ix:ix + 8, iy:iy + 8] = X[i * n_img_per_row + j].reshape((8, 8))

plt.imshow(img, cmap=plt.cm.binary)
plt.xticks([])
plt.yticks([])
plt.title('A selection from the 64-dimensional digits dataset')


# ----------------------------------------------------------------------
# Random 2D projection using a random unitary matrix
print("Computing random projection")
rp = random_projection.SparseRandomProjection(n_components=2, random_state=42)
X_projected = rp.fit_transform(X)
plot_embedding(X_projected, "Random Projection of the digits")


#----------------------------------------------------------------------
# Projection on to the first 2 principal components

print("Computing PCA projection")
t0 = time()
X_pca = decomposition.TruncatedSVD(n_components=2).fit_transform(X)
plot_embedding(X_pca,
               "Principal Components projection of the digits (time %.2fs)" %
               (time() - t0))

# ----------------------------------------------------------------------
# Projection on to the first 2 linear discriminant components

print("Computing Linear Discriminant Analysis projection")
X2 = X.copy()
X2.flat[::X.shape[1] + 1] += 0.01  # Make X invertible
t0 = time()
X_lda = discriminant_analysis.LinearDiscriminantAnalysis(n_components=2).fit_transform(X2, y)
plot_embedding(X_lda,
               "Linear Discriminant projection of the digits (time %.2fs)" %
               (time() - t0))


# ----------------------------------------------------------------------
# Isomap projection of the digits dataset
print("Computing Isomap projection")
t0 = time()
X_iso = manifold.Isomap(n_neighbors, n_components=2).fit_transform(X)
print("Done.")
plot_embedding(X_iso,
               "Isomap projection of the digits (time %.2fs)" %
               (time() - t0))


# ----------------------------------------------------------------------
# Locally linear embedding of the digits dataset
print("Computing LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
                                      method='standard')
t0 = time()
X_lle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_lle,
               "Locally Linear Embedding of the digits (time %.2fs)" %
               (time() - t0))


# ----------------------------------------------------------------------
# Modified Locally linear embedding of the digits dataset
print("Computing modified LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
                                      method='modified')
t0 = time()
X_mlle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_mlle,
               "Modified Locally Linear Embedding of the digits (time %.2fs)" %
               (time() - t0))


# ----------------------------------------------------------------------
# HLLE embedding of the digits dataset
print("Computing Hessian LLE embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
                                      method='hessian')
t0 = time()
X_hlle = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_hlle,
               "Hessian Locally Linear Embedding of the digits (time %.2fs)" %
               (time() - t0))


# ----------------------------------------------------------------------
# LTSA embedding of the digits dataset
print("Computing LTSA embedding")
clf = manifold.LocallyLinearEmbedding(n_neighbors, n_components=2,
                                      method='ltsa')
t0 = time()
X_ltsa = clf.fit_transform(X)
print("Done. Reconstruction error: %g" % clf.reconstruction_error_)
plot_embedding(X_ltsa,
               "Local Tangent Space Alignment of the digits (time %.2fs)" %
               (time() - t0))

# ----------------------------------------------------------------------
# MDS  embedding of the digits dataset
print("Computing MDS embedding")
clf = manifold.MDS(n_components=2, n_init=1, max_iter=2000,
                   dissimilarity='euclidean', metric=True,
                   )
t0 = time()

X_mds = clf.fit_transform(X)
print("Done. Stress: %f" % clf.stress_)
plot_embedding(X_mds,
               "MDS embedding of the digits (time %.2fs)" %
               (time() - t0))

# ----------------------------------------------------------------------
# Hubness reduction (LS) + MDS  embedding of the digits dataset
print("Computing MDS embedding from local scaling neighbors graph")
clf = manifold.MDS(n_components=2, n_init=1, max_iter=2000,
                   dissimilarity='precomputed', metric=True,
                   )
t0 = time()
graph = neighbors.graph.kneighbors_graph(
    X, n_neighbors=X.shape[0]-1, mode='distance', hubness='local_scaling').toarray()
X_mds = clf.fit_transform(graph)
print("Done. Stress: %f" % clf.stress_)
plot_embedding(X_mds,
               "Hubness reduction (LS) - MDS embedding (time %.2fs)" %
               (time() - t0))

# ----------------------------------------------------------------------
# Hubness reduction (MP) + MDS  embedding of the digits dataset
print("Computing MDS embedding from mutual proximity graph")
clf = manifold.MDS(n_components=2, n_init=1, max_iter=2000,
                   dissimilarity='precomputed', metric=True,
                   )
t0 = time()
graph = neighbors.graph.kneighbors_graph(
    X, n_neighbors=1082, mode='distance', hubness='mp').toarray()
X_mds = clf.fit_transform(graph)
print("Done. Stress: %f" % clf.stress_)
plot_embedding(X_mds,
               "Hubness reduction (MP) - MDS embedding (time %.2fs)" %
               (time() - t0))

# ----------------------------------------------------------------------
# Random Trees embedding of the digits dataset
print("Computing Totally Random Trees embedding")
hasher = ensemble.RandomTreesEmbedding(n_estimators=200, random_state=0,
                                       max_depth=5)
t0 = time()
X_transformed = hasher.fit_transform(X)
pca = decomposition.TruncatedSVD(n_components=2)
X_reduced = pca.fit_transform(X_transformed)

plot_embedding(X_reduced,
               "Random forest embedding of the digits (time %.2fs)" %
               (time() - t0))

# ----------------------------------------------------------------------
# Spectral embedding of the digits dataset
print("Computing Spectral embedding")
embedder = manifold.SpectralEmbedding(n_components=2, random_state=0,
                                      eigen_solver="arpack")
t0 = time()
X_se = embedder.fit_transform(X)

plot_embedding(X_se,
               "Spectral embedding of the digits (time %.2fs)" %
               (time() - t0))

# ----------------------------------------------------------------------
# t-SNE embedding of the digits dataset
print("Computing t-SNE embedding")
tsne = manifold.TSNE(n_components=2, init='pca', random_state=0)
t0 = time()
X_tsne = tsne.fit_transform(X)

plot_embedding(X_tsne,
               "t-SNE embedding of the digits (time %.2fs)" %
               (time() - t0))

# ----------------------------------------------------------------------
# NCA projection of the digits dataset
print("Computing NCA projection")
nca = neighbors.NeighborhoodComponentsAnalysis(n_components=2, random_state=0)
t0 = time()
X_nca = nca.fit_transform(X, y)

plot_embedding(X_nca,
               "NCA embedding of the digits (time %.2fs)" %
               (time() - t0))

plt.show()





Total running time of the script: ( 1 minutes  24.114 seconds)



Download Python source code: plot_lle_digits.py




Download Jupyter notebook: plot_lle_digits.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
API Documentation

This is the API documentation for scikit-hubness.


Analysis: skhubness.analysis

The skhubness.analysis package provides methods for measuring hubness.







	analysis.Hubness

	Examine hubness characteristics of data.



	analysis.VALID_HUBNESS_MEASURES

	Built-in mutable sequence.









Neighbors: skhubness.neighbors

The skhubness.neighbors package is a drop-in replacement for sklearn.neighbors,
providing all of its features, while adding transparent support for hubness reduction
and approximate nearest neighbor search.







	neighbors.BallTree

	BallTree for fast generalized N-point problems



	neighbors.DistanceMetric

	DistanceMetric class



	neighbors.KDTree

	KDTree for fast generalized N-point problems



	neighbors.HNSW

	Wrapper for using nmslib



	neighbors.KNeighborsClassifier

	Classifier implementing the k-nearest neighbors vote.



	neighbors.KNeighborsRegressor

	Regression based on k-nearest neighbors.



	neighbors.FalconnLSH

	Wrapper for using falconn LSH



	neighbors.NearestCentroid

	Nearest centroid classifier.



	neighbors.NearestNeighbors

	Unsupervised learner for implementing neighbor searches.



	neighbors.NNG

	Wrapper for ngtpy and NNG variants.



	neighbors.PuffinnLSH

	Wrap Puffinn LSH for scikit-learn compatibility.



	neighbors.RadiusNeighborsClassifier

	Classifier implementing a vote among neighbors within a given radius



	neighbors.RadiusNeighborsRegressor

	Regression based on neighbors within a fixed radius.



	neighbors.RandomProjectionTree

	Wrapper for using annoy.AnnoyIndex



	neighbors.kneighbors_graph

	Computes the (weighted) graph of k-Neighbors for points in X



	neighbors.radius_neighbors_graph

	Computes the (weighted) graph of Neighbors for points in X



	neighbors.KernelDensity

	Kernel Density Estimation.



	neighbors.LocalOutlierFactor

	Unsupervised Outlier Detection using Local Outlier Factor (LOF)



	neighbors.NeighborhoodComponentsAnalysis

	Neighborhood Components Analysis









Reduction: skhubness.reduction

The skhubness.reduction package provides methods for hubness reduction.







	reduction.MutualProximity

	Hubness reduction with Mutual Proximity [R5a390b9a9956-1].



	reduction.LocalScaling

	Hubness reduction with Local Scaling [Rf1f7cb70176a-1].



	reduction.DisSimLocal

	Hubness reduction with DisSimLocal [R3ede0f1b99b2-1].



	reduction.hubness_algorithms

	Supported hubness reduction algorithms












            

          

      

      

    

  

    
      
          
            
  
skhubness.analysis.Hubness


	
class skhubness.analysis.Hubness(k: int = 10, return_value: str = 'k_skewness', hub_size: float = 2.0, metric='euclidean', store_k_neighbors: bool = False, store_k_occurrence: bool = False, algorithm: str = 'auto', algorithm_params: Optional[dict] = None, hubness: Optional[str] = None, hubness_params: Optional[dict] = None, verbose: int = 0, n_jobs: int = 1, random_state=None, shuffle_equal: bool = True)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/analysis/estimation.py#L52]

	Examine hubness characteristics of data.


	Parameters

	
	k: int
	Neighborhood size



	return_value: str, default = “k_skewness”
	Hubness measure to return by score()
By default, this is the skewness of the k-occurrence histogram.
Use “all” to return a dict of all available measures,
or check skhubness.analysis.VALID_HUBNESS_MEASURE
for available measures.



	hub_size: float
	Hubs are defined as objects with k-occurrence > hub_size * k.



	metric: string, one of [‘euclidean’, ‘cosine’, ‘precomputed’]
	Metric to use for distance computation. Currently, only
Euclidean, cosine, and precomputed distances are supported.



	store_k_neighbors: bool
	Whether to save the k-neighbor lists. Requires O(n_test * k) memory.



	store_k_occurrence: bool
	Whether to save the k-occurrence. Requires O(n_test) memory.



	algorithm: {‘auto’, ‘hnsw’, ‘lsh’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
	Algorithm used to compute the nearest neighbors:


	‘hnsw’ will use HNSW


	‘lsh’ will use FalconnLSH


	‘ball_tree’ will use BallTree


	‘kd_tree’ will use KDTree


	‘brute’ will use a brute-force search.


	‘auto’ will attempt to decide the most appropriate algorithm
based on the values passed to fit() method.




Note: fitting on sparse input will override the setting of
this parameter, using brute force.



	algorithm_params: dict, optional
	Override default parameters of the NN algorithm.
For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100}
one hundred approximate neighbors are retrieved with LSH.
If parameter hubness is set, the candidate neighbors are further reordered
with hubness reduction.
Finally, n_neighbors objects are used from the (optionally reordered) candidates.



	hubness: {‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional
	Hubness reduction algorithm


	‘mutual_proximity’ or ‘mp’ will use MutualProximity


	‘local_scaling’ or ‘ls’ will use LocalScaling


	‘dis_sim_local’ or ‘dsl’ will use DisSimLocal




If None, no hubness reduction will be performed (=vanilla kNN).



	hubness_params: dict, optional
	Override default parameters of the selected hubness reduction algorithm.
For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’}
a mutual proximity variant is used, which models distance distributions
with independent Gaussians.



	random_state: int, RandomState instance or None, optional
	If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by np.random.



	shuffle_equal: bool, optional
	If true and metric=’precomputed’, shuffle neighbors with identical distances
to avoid artifact hubness.
NOTE: This is especially useful for secondary distance measures
with a finite number of possible values, e.g. SNN or MP empiric.



	n_jobs: int, optional
	Number of processes for parallel computations.
- 1: Don’t use multiprocessing.
- -1: Use all CPUs
Note that not all steps are currently parallelized.



	verbose: int, optional
	Level of output messages
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	Attributes

	
	k_skewness: float
	Hubness, measured as skewness of k-occurrence histogram [1]



	k_skewness_truncnorm: float
	Hubness, measured as skewness of truncated normal distribution
fitted with k-occurrence histogram



	atkinson_index: float
	Hubness, measured as the Atkinson index of k-occurrence distribution



	gini_index: float
	Hubness, measured as the Gini index of k-occurrence distribution



	robinhood_index: float
	Hubness, measured as Robin Hood index of k-occurrence distribution [2]



	antihubs: int
	Indices to antihubs



	antihub_occurrence: float
	Proportion of antihubs in data set



	hubs: int
	Indices to hubs



	hub_occurrence: float
	Proportion of k-nearest neighbor slots occupied by hubs



	groupie_ratio: float
	Proportion of objects with the largest hub in their neighborhood



	k_occurrence: ndarray
	Reverse neighbor count for each object



	k_neighbors: ndarray
	Indices to k-nearest neighbors for each object










	
__init__(k: int = 10, return_value: str = 'k_skewness', hub_size: float = 2.0, metric='euclidean', store_k_neighbors: bool = False, store_k_occurrence: bool = False, algorithm: str = 'auto', algorithm_params: Optional[dict] = None, hubness: Optional[str] = None, hubness_params: Optional[dict] = None, verbose: int = 0, n_jobs: int = 1, random_state=None, shuffle_equal: bool = True)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/analysis/estimation.py#L187]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([k, return_value, hub_size, …])

	Initialize self.



	fit(X[, y])

	Fit indexed objects.



	get_params([deep])

	Get parameters for this estimator.



	score([X, y, has_self_distances])

	Estimate hubness in a data set.



	set_params(**params)

	Set the parameters of this estimator.







	
fit(X, y=None) → skhubness.analysis.estimation.Hubness[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/analysis/estimation.py#L209]

	Fit indexed objects.


	Parameters

	
	X: {array-like, sparse matrix}, shape (n_samples, n_features) or (n_query, n_indexed) if metric==’precomputed’
	Training data vectors or distance matrix, if metric == ‘precomputed’.



	y: ignored
	





	Returns

	
	self:
	Fitted instance of :mod:Hubness














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
score(X: Optional[numpy.ndarray] = None, y=None, has_self_distances: bool = False) → Union[float, dict][source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/analysis/estimation.py#L546]

	Estimate hubness in a data set.

Hubness is estimated from the distances between all objects in X to all objects in Y.
If Y is None, all-against-all distances between the objects in X are used.
If self.metric == ‘precomputed’, X must be a distance matrix.


	Parameters

	
	X: ndarray, shape (n_query, n_features) or (n_query, n_indexed)
	Array of query vectors, or distance, if self.metric == ‘precomputed’



	y: ignored
	

	has_self_distances: bool, default = False
	Define, whether a precomputed distance matrix contains self distances,
which need to be excluded.







	Returns

	
	hubness_measure: float or dict
	Return the hubness measure as indicated by return_value.
Additional hubness indices are provided as attributes
(e.g. robinhood_index_()).
if return_value is ‘all’, a dict of all hubness measures is returned.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.analysis.VALID_HUBNESS_MEASURES


	
skhubness.analysis.VALID_HUBNESS_MEASURES = ['all', 'k_skewness', 'k_skewness_truncnorm', 'atkinson', 'gini', 'robinhood', 'antihubs', 'antihub_occurrence', 'hubs', 'hub_occurrence', 'groupie_ratio', 'k_neighbors', 'k_occurrence']

	Built-in mutable sequence.

If no argument is given, the constructor creates a new empty list.
The argument must be an iterable if specified.









            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.BallTree


	
class skhubness.neighbors.BallTree(X, leaf_size=40, metric='minkowski', **kwargs)

	BallTree for fast generalized N-point problems


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	n_samples is the number of points in the data set, and
n_features is the dimension of the parameter space.
Note: if X is a C-contiguous array of doubles then data will
not be copied. Otherwise, an internal copy will be made.



	leaf_sizepositive int, default=40
	Number of points at which to switch to brute-force. Changing
leaf_size will not affect the results of a query, but can
significantly impact the speed of a query and the memory required
to store the constructed tree.  The amount of memory needed to
store the tree scales as approximately n_samples / leaf_size.
For a specified leaf_size, a leaf node is guaranteed to
satisfy leaf_size <= n_points <= 2 * leaf_size, except in
the case that n_samples < leaf_size.



	metricstr or DistanceMetric object
	the distance metric to use for the tree.  Default=’minkowski’
with p=2 (that is, a euclidean metric). See the documentation
of the DistanceMetric class for a list of available metrics.
ball_tree.valid_metrics gives a list of the metrics which
are valid for BallTree.



	Additional keywords are passed to the distance metric class.
	

	Note: Callable functions in the metric parameter are NOT supported for KDTree
	

	and Ball Tree. Function call overhead will result in very poor performance.
	







Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3))  # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2)              
>>> dist, ind = tree.query(X[:1], k=3)                
>>> print(ind)  # indices of 3 closest neighbors
[0 3 1]
>>> print(dist)  # distances to 3 closest neighbors
[ 0.          0.19662693  0.29473397]





Pickle and Unpickle a tree.  Note that the state of the tree is saved in the
pickle operation: the tree needs not be rebuilt upon unpickling.

>>> import numpy as np
>>> import pickle
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3))  # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2)        
>>> s = pickle.dumps(tree)                     
>>> tree_copy = pickle.loads(s)                
>>> dist, ind = tree_copy.query(X[:1], k=3)     
>>> print(ind)  # indices of 3 closest neighbors
[0 3 1]
>>> print(dist)  # distances to 3 closest neighbors
[ 0.          0.19662693  0.29473397]





Query for neighbors within a given radius

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3))  # 10 points in 3 dimensions
>>> tree = BallTree(X, leaf_size=2)     
>>> print(tree.query_radius(X[:1], r=0.3, count_only=True))
3
>>> ind = tree.query_radius(X[:1], r=0.3)  
>>> print(ind)  # indices of neighbors within distance 0.3
[3 0 1]





Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> rng = np.random.RandomState(42)
>>> X = rng.random_sample((100, 3))
>>> tree = BallTree(X)                
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649,  7.83281226,  7.2071716 ])





Compute a two-point auto-correlation function

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = BallTree(X)                
>>> tree.two_point_correlation(X, r)
array([ 30,  62, 278, 580, 820])






	Attributes

	
	datamemory view
	The training data










	
__init__(*args, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(*args, **kwargs)

	Initialize self.



	get_arrays(self)

	Get data and node arrays.



	get_n_calls(self)

	Get number of calls.



	get_tree_stats(self)

	Get tree status.



	kernel_density(self, X, h[, kernel, atol, …])

	Compute the kernel density estimate at points X with the given kernel, using the distance metric specified at tree creation.



	query(X[, k, return_distance, dualtree, …])

	query the tree for the k nearest neighbors



	query_radius(X, r[, return_distance, …])

	query the tree for neighbors within a radius r



	reset_n_calls(self)

	Reset number of calls to 0.



	two_point_correlation(X, r[, dualtree])

	Compute the two-point correlation function






Attributes







	data

	



	idx_array

	



	node_bounds

	



	node_data

	



	sample_weight

	



	sum_weight

	



	valid_metrics

	







	
get_arrays(self)

	Get data and node arrays.


	Returns

	
	arrays: tuple of array
	Arrays for storing tree data, index, node data and node bounds.














	
get_n_calls(self)

	Get number of calls.


	Returns

	
	n_calls: int
	number of distance computation calls














	
get_tree_stats(self)

	Get tree status.


	Returns

	
	tree_stats: tuple of int
	(number of trims, number of leaves, number of splits)














	
kernel_density(self, X, h, kernel='gaussian', atol=0, rtol=1e-08, breadth_first=True, return_log=False)

	Compute the kernel density estimate at points X with the given kernel,
using the distance metric specified at tree creation.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	An array of points to query.  Last dimension should match dimension
of training data.



	hfloat
	the bandwidth of the kernel



	kernelstr, default=”gaussian”
	specify the kernel to use.  Options are
- ‘gaussian’
- ‘tophat’
- ‘epanechnikov’
- ‘exponential’
- ‘linear’
- ‘cosine’
Default is kernel = ‘gaussian’



	atol, rtolfloat, default=0, 1e-8
	Specify the desired relative and absolute tolerance of the result.
If the true result is K_true, then the returned result K_ret
satisfies abs(K_true - K_ret) < atol + rtol * K_ret
The default is zero (i.e. machine precision) for both.



	breadth_firstbool, default=False
	If True, use a breadth-first search.  If False (default) use a
depth-first search.  Breadth-first is generally faster for
compact kernels and/or high tolerances.



	return_logbool, default=False
	Return the logarithm of the result.  This can be more accurate
than returning the result itself for narrow kernels.







	Returns

	
	densityndarray of shape X.shape[:-1]
	The array of (log)-density evaluations














	
query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)

	query the tree for the k nearest neighbors


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	An array of points to query



	kint, default=1
	The number of nearest neighbors to return



	return_distancebool, default=True
	if True, return a tuple (d, i) of distances and indices
if False, return array i



	dualtreebool, default=False
	if True, use the dual tree formalism for the query: a tree is
built for the query points, and the pair of trees is used to
efficiently search this space.  This can lead to better
performance as the number of points grows large.



	breadth_firstbool, default=False
	if True, then query the nodes in a breadth-first manner.
Otherwise, query the nodes in a depth-first manner.



	sort_resultsbool, default=True
	if True, then distances and indices of each point are sorted
on return, so that the first column contains the closest points.
Otherwise, neighbors are returned in an arbitrary order.







	Returns

	
	iif return_distance == False
	

	(d,i)if return_distance == True
	

	dndarray of shape X.shape[:-1] + k, dtype=double
	Each entry gives the list of distances to the neighbors of the
corresponding point.



	indarray of shape X.shape[:-1] + k, dtype=int
	Each entry gives the list of indices of neighbors of the
corresponding point.














	
query_radius(X, r, return_distance=False, count_only=False, sort_results=False)

	query the tree for neighbors within a radius r


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	An array of points to query



	rdistance within which neighbors are returned
	r can be a single value, or an array of values of shape
x.shape[:-1] if different radii are desired for each point.



	return_distancebool, default=False
	if True,  return distances to neighbors of each point
if False, return only neighbors
Note that unlike the query() method, setting return_distance=True
here adds to the computation time.  Not all distances need to be
calculated explicitly for return_distance=False.  Results are
not sorted by default: see sort_results keyword.



	count_onlybool, default=False
	if True,  return only the count of points within distance r
if False, return the indices of all points within distance r
If return_distance==True, setting count_only=True will
result in an error.



	sort_resultsbool, default=False
	if True, the distances and indices will be sorted before being
returned.  If False, the results will not be sorted.  If
return_distance == False, setting sort_results = True will
result in an error.







	Returns

	
	countif count_only == True
	

	indif count_only == False and return_distance == False
	

	(ind, dist)if count_only == False and return_distance == True
	

	countndarray of shape X.shape[:-1], dtype=int
	Each entry gives the number of neighbors within a distance r of the
corresponding point.



	indndarray of shape X.shape[:-1], dtype=object
	Each element is a numpy integer array listing the indices of
neighbors of the corresponding point.  Note that unlike
the results of a k-neighbors query, the returned neighbors
are not sorted by distance by default.



	distndarray of shape X.shape[:-1], dtype=object
	Each element is a numpy double array listing the distances
corresponding to indices in i.














	
reset_n_calls(self)

	Reset number of calls to 0.






	
two_point_correlation(X, r, dualtree=False)

	Compute the two-point correlation function


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	An array of points to query.  Last dimension should match dimension
of training data.



	rarray-like
	A one-dimensional array of distances



	dualtreebool, default=False
	If True, use a dualtree algorithm.  Otherwise, use a single-tree
algorithm.  Dual tree algorithms can have better scaling for
large N.







	Returns

	
	countsndarray
	counts[i] contains the number of pairs of points with distance
less than or equal to r[i]





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.DistanceMetric


	
class skhubness.neighbors.DistanceMetric

	DistanceMetric class

This class provides a uniform interface to fast distance metric
functions.  The various metrics can be accessed via the get_metric()
class method and the metric string identifier (see below).

Examples

>>> from sklearn.neighbors import DistanceMetric
>>> dist = DistanceMetric.get_metric('euclidean')
>>> X = [[0, 1, 2],
         [3, 4, 5]]
>>> dist.pairwise(X)
array([[ 0.        ,  5.19615242],
       [ 5.19615242,  0.        ]])





Available Metrics

The following lists the string metric identifiers and the associated
distance metric classes:

Metrics intended for real-valued vector spaces:









	identifier

	class name

	args

	distance function



	“euclidean”

	EuclideanDistance

	
	




	sqrt(sum((x - y)^2))



	“manhattan”

	ManhattanDistance

	
	




	sum(|x - y|)



	“chebyshev”

	ChebyshevDistance

	
	




	max(|x - y|)



	“minkowski”

	MinkowskiDistance

	p

	sum(|x - y|^p)^(1/p)



	“wminkowski”

	WMinkowskiDistance

	p, w

	sum(|w * (x - y)|^p)^(1/p)



	“seuclidean”

	SEuclideanDistance

	V

	sqrt(sum((x - y)^2 / V))



	“mahalanobis”

	MahalanobisDistance

	V or VI

	sqrt((x - y)' V^-1 (x - y))






Metrics intended for two-dimensional vector spaces:  Note that the haversine
distance metric requires data in the form of [latitude, longitude] and both
inputs and outputs are in units of radians.








	identifier

	class name

	distance function



	“haversine”

	HaversineDistance

	2 arcsin(sqrt(sin^2(0.5*dx) + cos(x1)cos(x2)sin^2(0.5*dy)))






Metrics intended for integer-valued vector spaces:  Though intended
for integer-valued vectors, these are also valid metrics in the case of
real-valued vectors.








	identifier

	class name

	distance function



	“hamming”

	HammingDistance

	N_unequal(x, y) / N_tot



	“canberra”

	CanberraDistance

	sum(|x - y| / (|x| + |y|))



	“braycurtis”

	BrayCurtisDistance

	sum(|x - y|) / (sum(|x|) + sum(|y|))






Metrics intended for boolean-valued vector spaces:  Any nonzero entry
is evaluated to “True”.  In the listings below, the following
abbreviations are used:



	N  : number of dimensions


	NTT : number of dims in which both values are True


	NTF : number of dims in which the first value is True, second is False


	NFT : number of dims in which the first value is False, second is True


	NFF : number of dims in which both values are False


	NNEQ : number of non-equal dimensions, NNEQ = NTF + NFT


	NNZ : number of nonzero dimensions, NNZ = NTF + NFT + NTT














	identifier

	class name

	distance function



	“jaccard”

	JaccardDistance

	NNEQ / NNZ



	“matching”

	MatchingDistance

	NNEQ / N



	“dice”

	DiceDistance

	NNEQ / (NTT + NNZ)



	“kulsinski”

	KulsinskiDistance

	(NNEQ + N - NTT) / (NNEQ + N)



	“rogerstanimoto”

	RogersTanimotoDistance

	2 * NNEQ / (N + NNEQ)



	“russellrao”

	RussellRaoDistance

	NNZ / N



	“sokalmichener”

	SokalMichenerDistance

	2 * NNEQ / (N + NNEQ)



	“sokalsneath”

	SokalSneathDistance

	NNEQ / (NNEQ + 0.5 * NTT)






User-defined distance:








	identifier

	class name

	args



	“pyfunc”

	PyFuncDistance

	func






Here func is a function which takes two one-dimensional numpy
arrays, and returns a distance.  Note that in order to be used within
the BallTree, the distance must be a true metric:
i.e. it must satisfy the following properties


	Non-negativity: d(x, y) >= 0


	Identity: d(x, y) = 0 if and only if x == y


	Symmetry: d(x, y) = d(y, x)


	Triangle Inequality: d(x, y) + d(y, z) >= d(x, z)




Because of the Python object overhead involved in calling the python
function, this will be fairly slow, but it will have the same
scaling as other distances.


	
__init__(*args, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(*args, **kwargs)

	Initialize self.



	dist_to_rdist

	Convert the true distance to the reduced distance.



	get_metric

	Get the given distance metric from the string identifier.



	pairwise

	Compute the pairwise distances between X and Y



	rdist_to_dist

	Convert the Reduced distance to the true distance.







	
dist_to_rdist()

	Convert the true distance to the reduced distance.

The reduced distance, defined for some metrics, is a computationally
more efficient measure which preserves the rank of the true distance.
For example, in the Euclidean distance metric, the reduced distance
is the squared-euclidean distance.






	
get_metric()

	Get the given distance metric from the string identifier.

See the docstring of DistanceMetric for a list of available metrics.


	Parameters

	
	metricstring or class name
	The distance metric to use



	**kwargs
	additional arguments will be passed to the requested metric














	
pairwise()

	Compute the pairwise distances between X and Y

This is a convenience routine for the sake of testing.  For many
metrics, the utilities in scipy.spatial.distance.cdist and
scipy.spatial.distance.pdist will be faster.


	Parameters

	
	Xarray_like
	Array of shape (Nx, D), representing Nx points in D dimensions.



	Yarray_like (optional)
	Array of shape (Ny, D), representing Ny points in D dimensions.
If not specified, then Y=X.



	Returns
	

	——-
	

	distndarray
	The shape (Nx, Ny) array of pairwise distances between points in
X and Y.














	
rdist_to_dist()

	Convert the Reduced distance to the true distance.

The reduced distance, defined for some metrics, is a computationally
more efficient measure which preserves the rank of the true distance.
For example, in the Euclidean distance metric, the reduced distance
is the squared-euclidean distance.













            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.KDTree


	
class skhubness.neighbors.KDTree(X, leaf_size=40, metric='minkowski', **kwargs)

	KDTree for fast generalized N-point problems


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	n_samples is the number of points in the data set, and
n_features is the dimension of the parameter space.
Note: if X is a C-contiguous array of doubles then data will
not be copied. Otherwise, an internal copy will be made.



	leaf_sizepositive int, default=40
	Number of points at which to switch to brute-force. Changing
leaf_size will not affect the results of a query, but can
significantly impact the speed of a query and the memory required
to store the constructed tree.  The amount of memory needed to
store the tree scales as approximately n_samples / leaf_size.
For a specified leaf_size, a leaf node is guaranteed to
satisfy leaf_size <= n_points <= 2 * leaf_size, except in
the case that n_samples < leaf_size.



	metricstr or DistanceMetric object
	the distance metric to use for the tree.  Default=’minkowski’
with p=2 (that is, a euclidean metric). See the documentation
of the DistanceMetric class for a list of available metrics.
kd_tree.valid_metrics gives a list of the metrics which
are valid for KDTree.



	Additional keywords are passed to the distance metric class.
	

	Note: Callable functions in the metric parameter are NOT supported for KDTree
	

	and Ball Tree. Function call overhead will result in very poor performance.
	







Examples

Query for k-nearest neighbors

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3))  # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2)              
>>> dist, ind = tree.query(X[:1], k=3)                
>>> print(ind)  # indices of 3 closest neighbors
[0 3 1]
>>> print(dist)  # distances to 3 closest neighbors
[ 0.          0.19662693  0.29473397]





Pickle and Unpickle a tree.  Note that the state of the tree is saved in the
pickle operation: the tree needs not be rebuilt upon unpickling.

>>> import numpy as np
>>> import pickle
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3))  # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2)        
>>> s = pickle.dumps(tree)                     
>>> tree_copy = pickle.loads(s)                
>>> dist, ind = tree_copy.query(X[:1], k=3)     
>>> print(ind)  # indices of 3 closest neighbors
[0 3 1]
>>> print(dist)  # distances to 3 closest neighbors
[ 0.          0.19662693  0.29473397]





Query for neighbors within a given radius

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((10, 3))  # 10 points in 3 dimensions
>>> tree = KDTree(X, leaf_size=2)     
>>> print(tree.query_radius(X[:1], r=0.3, count_only=True))
3
>>> ind = tree.query_radius(X[:1], r=0.3)  
>>> print(ind)  # indices of neighbors within distance 0.3
[3 0 1]





Compute a gaussian kernel density estimate:

>>> import numpy as np
>>> rng = np.random.RandomState(42)
>>> X = rng.random_sample((100, 3))
>>> tree = KDTree(X)                
>>> tree.kernel_density(X[:3], h=0.1, kernel='gaussian')
array([ 6.94114649,  7.83281226,  7.2071716 ])





Compute a two-point auto-correlation function

>>> import numpy as np
>>> rng = np.random.RandomState(0)
>>> X = rng.random_sample((30, 3))
>>> r = np.linspace(0, 1, 5)
>>> tree = KDTree(X)                
>>> tree.two_point_correlation(X, r)
array([ 30,  62, 278, 580, 820])






	Attributes

	
	datamemory view
	The training data










	
__init__(*args, **kwargs)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(*args, **kwargs)

	Initialize self.



	get_arrays(self)

	Get data and node arrays.



	get_n_calls(self)

	Get number of calls.



	get_tree_stats(self)

	Get tree status.



	kernel_density(self, X, h[, kernel, atol, …])

	Compute the kernel density estimate at points X with the given kernel, using the distance metric specified at tree creation.



	query(X[, k, return_distance, dualtree, …])

	query the tree for the k nearest neighbors



	query_radius(X, r[, return_distance, …])

	query the tree for neighbors within a radius r



	reset_n_calls(self)

	Reset number of calls to 0.



	two_point_correlation(X, r[, dualtree])

	Compute the two-point correlation function






Attributes







	data

	



	idx_array

	



	node_bounds

	



	node_data

	



	sample_weight

	



	sum_weight

	



	valid_metrics

	







	
get_arrays(self)

	Get data and node arrays.


	Returns

	
	arrays: tuple of array
	Arrays for storing tree data, index, node data and node bounds.














	
get_n_calls(self)

	Get number of calls.


	Returns

	
	n_calls: int
	number of distance computation calls














	
get_tree_stats(self)

	Get tree status.


	Returns

	
	tree_stats: tuple of int
	(number of trims, number of leaves, number of splits)














	
kernel_density(self, X, h, kernel='gaussian', atol=0, rtol=1e-08, breadth_first=True, return_log=False)

	Compute the kernel density estimate at points X with the given kernel,
using the distance metric specified at tree creation.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	An array of points to query.  Last dimension should match dimension
of training data.



	hfloat
	the bandwidth of the kernel



	kernelstr, default=”gaussian”
	specify the kernel to use.  Options are
- ‘gaussian’
- ‘tophat’
- ‘epanechnikov’
- ‘exponential’
- ‘linear’
- ‘cosine’
Default is kernel = ‘gaussian’



	atol, rtolfloat, default=0, 1e-8
	Specify the desired relative and absolute tolerance of the result.
If the true result is K_true, then the returned result K_ret
satisfies abs(K_true - K_ret) < atol + rtol * K_ret
The default is zero (i.e. machine precision) for both.



	breadth_firstbool, default=False
	If True, use a breadth-first search.  If False (default) use a
depth-first search.  Breadth-first is generally faster for
compact kernels and/or high tolerances.



	return_logbool, default=False
	Return the logarithm of the result.  This can be more accurate
than returning the result itself for narrow kernels.







	Returns

	
	densityndarray of shape X.shape[:-1]
	The array of (log)-density evaluations














	
query(X, k=1, return_distance=True, dualtree=False, breadth_first=False)

	query the tree for the k nearest neighbors


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	An array of points to query



	kint, default=1
	The number of nearest neighbors to return



	return_distancebool, default=True
	if True, return a tuple (d, i) of distances and indices
if False, return array i



	dualtreebool, default=False
	if True, use the dual tree formalism for the query: a tree is
built for the query points, and the pair of trees is used to
efficiently search this space.  This can lead to better
performance as the number of points grows large.



	breadth_firstbool, default=False
	if True, then query the nodes in a breadth-first manner.
Otherwise, query the nodes in a depth-first manner.



	sort_resultsbool, default=True
	if True, then distances and indices of each point are sorted
on return, so that the first column contains the closest points.
Otherwise, neighbors are returned in an arbitrary order.







	Returns

	
	iif return_distance == False
	

	(d,i)if return_distance == True
	

	dndarray of shape X.shape[:-1] + k, dtype=double
	Each entry gives the list of distances to the neighbors of the
corresponding point.



	indarray of shape X.shape[:-1] + k, dtype=int
	Each entry gives the list of indices of neighbors of the
corresponding point.














	
query_radius(X, r, return_distance=False, count_only=False, sort_results=False)

	query the tree for neighbors within a radius r


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	An array of points to query



	rdistance within which neighbors are returned
	r can be a single value, or an array of values of shape
x.shape[:-1] if different radii are desired for each point.



	return_distancebool, default=False
	if True,  return distances to neighbors of each point
if False, return only neighbors
Note that unlike the query() method, setting return_distance=True
here adds to the computation time.  Not all distances need to be
calculated explicitly for return_distance=False.  Results are
not sorted by default: see sort_results keyword.



	count_onlybool, default=False
	if True,  return only the count of points within distance r
if False, return the indices of all points within distance r
If return_distance==True, setting count_only=True will
result in an error.



	sort_resultsbool, default=False
	if True, the distances and indices will be sorted before being
returned.  If False, the results will not be sorted.  If
return_distance == False, setting sort_results = True will
result in an error.







	Returns

	
	countif count_only == True
	

	indif count_only == False and return_distance == False
	

	(ind, dist)if count_only == False and return_distance == True
	

	countndarray of shape X.shape[:-1], dtype=int
	Each entry gives the number of neighbors within a distance r of the
corresponding point.



	indndarray of shape X.shape[:-1], dtype=object
	Each element is a numpy integer array listing the indices of
neighbors of the corresponding point.  Note that unlike
the results of a k-neighbors query, the returned neighbors
are not sorted by distance by default.



	distndarray of shape X.shape[:-1], dtype=object
	Each element is a numpy double array listing the distances
corresponding to indices in i.














	
reset_n_calls(self)

	Reset number of calls to 0.






	
two_point_correlation(X, r, dualtree=False)

	Compute the two-point correlation function


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	An array of points to query.  Last dimension should match dimension
of training data.



	rarray-like
	A one-dimensional array of distances



	dualtreebool, default=False
	If True, use a dualtree algorithm.  Otherwise, use a single-tree
algorithm.  Dual tree algorithms can have better scaling for
large N.







	Returns

	
	countsndarray
	counts[i] contains the number of pairs of points with distance
less than or equal to r[i]





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.HNSW


	
class skhubness.neighbors.HNSW(n_candidates: int = 5, metric: str = 'euclidean', method: str = 'hnsw', post_processing: int = 2, n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/hnsw.py#L21]

	Wrapper for using nmslib

Hierarchical navigable small-world graphs are data structures,
that allow for approximate nearest neighbor search.
Here, an implementation from nmslib is used.


	Parameters

	
	n_candidates: int, default = 5
	Number of neighbors to retrieve



	metric: str, default = ‘euclidean’
	Distance metric, allowed are “angular”, “euclidean”, “manhattan”, “hamming”, “dot”



	method: str, default = ‘hnsw’,
	ANN method to use. Currently, only ‘hnsw’ is supported.



	post_processing: int, default = 2
	More post processing means longer index creation,
and higher retrieval accuracy.



	n_jobs: int, default = 1
	Number of parallel jobs



	verbose: int, default = 0
	Verbosity level. If verbose >= 2, show progress bar on indexing.







	Attributes

	
	valid_metrics:
	List of valid distance metrics/measures










	
__init__(n_candidates: int = 5, metric: str = 'euclidean', method: str = 'hnsw', post_processing: int = 2, n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/hnsw.py#L52]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_candidates, metric, method, …])

	Initialize self.



	fit(X[, y])

	Setup the HNSW index from training data.



	kneighbors([X, n_candidates, return_distance])

	Retrieve k nearest neighbors.






Attributes







	valid_metrics

	







	
fit(X, y=None) → skhubness.neighbors.hnsw.HNSW[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/hnsw.py#L68]

	Setup the HNSW index from training data.


	Parameters

	
	X: np.array
	Data to be indexed



	y: any
	Ignored







	Returns

	
	self: HNSW
	An instance of HNSW with a built graph














	
kneighbors(X: Optional[numpy.ndarray] = None, n_candidates: Optional[int] = None, return_distance: bool = True) → Union[Tuple[numpy.array, numpy.array], numpy.array][source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/hnsw.py#L113]

	Retrieve k nearest neighbors.


	Parameters

	
	X: np.array or None, optional, default = None
	Query objects. If None, search among the indexed objects.



	n_candidates: int or None, optional, default = None
	Number of neighbors to retrieve.
If None, use the value passed during construction.



	return_distance: bool, default = True
	If return_distance, will return distances and indices to neighbors.
Else, only return the indices.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.KNeighborsClassifier


	
class skhubness.neighbors.KNeighborsClassifier(n_neighbors: int = 5, weights: str = 'uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size: int = 30, p=2, metric='minkowski', metric_params=None, n_jobs=None, verbose: int = 0, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/classification.py#L26]

	Classifier implementing the k-nearest neighbors vote.

Read more in the scikit-learn User Guide [https://scikit-learn.org/stable/modules/neighbors.html#classification]


	Parameters

	
	n_neighbors: int, optional (default = 5)
	Number of neighbors to use by default for kneighbors() queries.



	weights: str or callable, optional (default = ‘uniform’)
	weight function used in prediction.  Possible values:


	‘uniform’: uniform weights.  All points in each neighborhood
are weighted equally.


	‘distance’: weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.


	[callable]: a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.






	algorithm{‘auto’, ‘hnsw’, ‘lsh’, ‘falconn_lsh’, ‘nng’, ‘rptree’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
	Algorithm used to compute the nearest neighbors:


	‘hnsw’ will use HNSW


	‘lsh’ will use PuffinnLSH


	‘falconn_lsh’ will use FalconnLSH


	‘nng’ will use NNG


	‘rptree’ will use RandomProjectionTree


	‘ball_tree’ will use BallTree


	‘kd_tree’ will use KDTree


	‘brute’ will use a brute-force search.


	‘auto’ will attempt to decide the most appropriate exact algorithm
based on the values passed to fit() method. This will not
select an approximate nearest neighbor algorithm.




Note: fitting on sparse input will override the setting of
this parameter, using brute force.



	algorithm_params: dict, optional
	Override default parameters of the NN algorithm.
For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100}
one hundred approximate neighbors are retrieved with LSH.
If parameter hubness is set, the candidate neighbors are further reordered
with hubness reduction.
Finally, n_neighbors objects are used from the (optionally reordered) candidates.



	hubness: {‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional
	Hubness reduction algorithm


	‘mutual_proximity’ or ‘mp’ will use MutualProximity


	‘local_scaling’ or ‘ls’ will use LocalScaling


	‘dis_sim_local’ or ‘dsl’ will use DisSimLocal




If None, no hubness reduction will be performed (=vanilla kNN).



	hubness_params: dict, optional
	Override default parameters of the selected hubness reduction algorithm.
For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’}
a mutual proximity variant is used, which models distance distributions
with independent Gaussians.



	leaf_size: int, optional (default = 30)
	Leaf size passed to BallTree or KDTree.  This can affect the
speed of the construction and query, as well as the memory
required to store the tree.  The optimal value depends on the
nature of the problem.



	p: integer, optional (default = 2)
	Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.



	metric: string or callable, default ‘minkowski’
	the distance metric to use for the tree.  The default metric is
minkowski, and with p=2 is equivalent to the standard Euclidean
metric. See the documentation of the DistanceMetric class for a
list of available metrics.



	metric_params: dict, optional (default = None)
	Additional keyword arguments for the metric function.



	n_jobs: int or None, optional (default=None)
	The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.
See Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs] for more details.
Doesn’t affect fit() method.










See also


	RadiusNeighborsClassifier
	

	KNeighborsRegressor
	

	RadiusNeighborsRegressor
	

	NearestNeighbors
	





Notes

See Nearest Neighbors [https://scikit-learn.org/stable/modules/neighbors.html#neighbors]
in the scikit-learn online documentation for a discussion
of the choice of algorithm and leaf_size.


Warning

Regarding the Nearest Neighbors algorithms, if it is found that two
neighbors, neighbor k+1 and k, have identical distances
but different labels, the results will depend on the ordering of the
training data.



https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from skhubness.neighbors import KNeighborsClassifier
>>> neigh = KNeighborsClassifier(n_neighbors=3)
>>> neigh.fit(X, y) 
KNeighborsClassifier(...)
>>> print(neigh.predict([[1.1]]))
[0]
>>> print(neigh.predict_proba([[0.9]]))
[[0.66666667 0.33333333]]






	
__init__(n_neighbors: int = 5, weights: str = 'uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size: int = 30, p=2, metric='minkowski', metric_params=None, n_jobs=None, verbose: int = 0, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/classification.py#L152]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_neighbors, weights, algorithm, …])

	Initialize self.



	fit(X, y)

	Fit the model using X as training data and y as target values



	get_params([deep])

	Get parameters for this estimator.



	kcandidates([X, n_neighbors, return_distance])

	Finds the K-neighbors of a point.



	kneighbors([X, n_neighbors, return_distance])

	TODO



	kneighbors_graph([X, n_neighbors, mode])

	Computes the (weighted) graph of k-Neighbors for points in X



	predict(X)

	Predict the class labels for the provided data



	predict_proba(X)

	Return probability estimates for the test data X.



	score(X, y[, sample_weight])

	Return the mean accuracy on the given test data and labels.



	set_params(**params)

	Set the parameters of this estimator.







	
fit(X, y)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L964]

	Fit the model using X as training data and y as target values


	Parameters

	
	X{array-like, sparse matrix, BallTree, KDTree, HNSW, FalconnLSH, PuffinLSH, NNG, RandomProjectionTree}
	Training data. If array or matrix, shape [n_samples, n_features],
or [n_samples, n_samples] if metric=’precomputed’.



	y{array-like, sparse matrix}
	Target values of shape = [n_samples] or [n_samples, n_outputs]














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
kcandidates(X=None, n_neighbors=None, return_distance=True) → numpy.ndarray[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L433]

	Finds the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.


	Parameters

	
	Xarray-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors to get (default is the value
passed to the constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns

	
	distarray
	Array representing the lengths to points, only present if
return_distance=True



	indarray
	Indices of the nearest points in the population matrix.









Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]])) 
(array([[0.5]]), array([[2]]))





As you can see, it returns [[0.5]], and [[2]], which means that the
element is at distance 0.5 and is the third element of samples
(indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False) 
array([[1],
       [2]]...)










	
kneighbors(X=None, n_neighbors=None, return_distance=True)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L613]

	TODO






	
kneighbors_graph(X=None, n_neighbors=None, mode='connectivity')

	Computes the (weighted) graph of k-Neighbors for points in X


	Parameters

	
	Xarray-like, shape (n_queries, n_features),                 or (n_queries, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors for each sample.
(default is value passed to the constructor).



	mode{‘connectivity’, ‘distance’}, optional
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are Euclidean distance between points.







	Returns

	
	Asparse graph in CSR format, shape = [n_queries, n_samples_fit]
	n_samples_fit is the number of samples in the fitted data
A[i, j] is assigned the weight of edge that connects i to j.










See also


	NearestNeighbors.radius_neighbors_graph
	





Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 1.],
       [1., 0., 1.]])










	
predict(X)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/classification.py#L171]

	Predict the class labels for the provided data


	Parameters

	
	X: array-like, shape (n_query, n_features),                 or (n_query, n_indexed) if metric == ‘precomputed’
	Test samples.







	Returns

	
	y: array of shape [n_samples] or [n_samples, n_outputs]
	Class labels for each data sample.














	
predict_proba(X)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/classification.py#L213]

	Return probability estimates for the test data X.


	Parameters

	
	X: array-like, shape (n_query, n_features),                 or (n_query, n_indexed) if metric == ‘precomputed’
	Test samples.







	Returns

	
	p: array of shape = [n_samples, n_classes], or a list of n_outputs
	of such arrays if n_outputs > 1.
The class probabilities of the input samples. Classes are ordered
by lexicographic order.














	
score(X, y, sample_weight=None)

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	Test samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True labels for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns

	
	scorefloat
	Mean accuracy of self.predict(X) wrt. y.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.KNeighborsRegressor


	
class skhubness.neighbors.KNeighborsRegressor(n_neighbors=5, weights='uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/regression.py#L28]

	Regression based on k-nearest neighbors.

The target is predicted by local interpolation of the targets
associated of the nearest neighbors in the training set.

Read more in the scikit-learn User Guide [https://scikit-learn.org/stable/modules/neighbors.html#regression].


	Parameters

	
	n_neighbors: int, optional (default = 5)
	Number of neighbors to use by default for kneighbors() queries.



	weights: str or callable
	weight function used in prediction.  Possible values:


	‘uniform’: uniform weights.  All points in each neighborhood
are weighted equally.


	‘distance’: weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.


	[callable]: a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.




Uniform weights are used by default.



	algorithm{‘auto’, ‘hnsw’, ‘lsh’, ‘falconn_lsh’, ‘nng’, ‘rptree’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
	Algorithm used to compute the nearest neighbors:


	‘hnsw’ will use HNSW


	‘lsh’ will use PuffinnLSH


	‘falconn_lsh’ will use FalconnLSH


	‘nng’ will use NNG


	‘rptree’ will use RandomProjectionTree


	‘ball_tree’ will use BallTree


	‘kd_tree’ will use KDTree


	‘brute’ will use a brute-force search.


	‘auto’ will attempt to decide the most appropriate exact algorithm
based on the values passed to fit() method. This will not
select an approximate nearest neighbor algorithm.




Note: fitting on sparse input will override the setting of
this parameter, using brute force.



	algorithm_params: dict, optional
	Override default parameters of the NN algorithm.
For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100}
one hundred approximate neighbors are retrieved with LSH.
If parameter hubness is set, the candidate neighbors are further reordered
with hubness reduction.
Finally, n_neighbors objects are used from the (optionally reordered) candidates.



	hubness: {‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional
	Hubness reduction algorithm


	‘mutual_proximity’ or ‘mp’ will use MutualProximity


	‘local_scaling’ or ‘ls’ will use LocalScaling


	‘dis_sim_local’ or ‘dsl’ will use DisSimLocal




If None, no hubness reduction will be performed (=vanilla kNN).



	hubness_params: dict, optional
	Override default parameters of the selected hubness reduction algorithm.
For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’}
a mutual proximity variant is used, which models distance distributions
with independent Gaussians.



	leaf_size: int, optional (default = 30)
	Leaf size passed to BallTree or KDTree.  This can affect the
speed of the construction and query, as well as the memory
required to store the tree.  The optimal value depends on the
nature of the problem.



	p: integer, optional (default = 2)
	Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.



	metric: string or callable, default ‘minkowski’
	the distance metric to use for the tree.  The default metric is
minkowski, and with p=2 is equivalent to the standard Euclidean
metric. See the documentation of the DistanceMetric class for a
list of available metrics.



	metric_params: dict, optional (default = None)
	Additional keyword arguments for the metric function.



	n_jobs: int or None, optional (default=None)
	The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learn
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.
Doesn’t affect fit() method.










See also


	NearestNeighbors
	

	RadiusNeighborsRegressor
	

	KNeighborsClassifier
	

	RadiusNeighborsClassifier
	





Notes

See Nearest Neighbors [https://scikit-learn.org/stable/modules/neighbors.html#neighbors]
in the scikit-learn online documentation for a discussion
of the choice of algorithm and leaf_size.


Warning

Regarding the Nearest Neighbors algorithms, if it is found that two
neighbors, neighbor k+1 and k, have identical distances but
different labels, the results will depend on the ordering of the
training data.



https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from skhubness.neighbors import KNeighborsRegressor
>>> neigh = KNeighborsRegressor(n_neighbors=2)
>>> neigh.fit(X, y) 
KNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[0.5]






	
__init__(n_neighbors=5, weights='uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/regression.py#L160]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_neighbors, weights, algorithm, …])

	Initialize self.



	fit(X, y)

	Fit the model using X as training data and y as target values



	get_params([deep])

	Get parameters for this estimator.



	kcandidates([X, n_neighbors, return_distance])

	Finds the K-neighbors of a point.



	kneighbors([X, n_neighbors, return_distance])

	TODO



	kneighbors_graph([X, n_neighbors, mode])

	Computes the (weighted) graph of k-Neighbors for points in X



	predict(X)

	Predict the target for the provided data



	score(X, y[, sample_weight])

	Return the coefficient of determination R^2 of the prediction.



	set_params(**params)

	Set the parameters of this estimator.







	
fit(X, y)

	Fit the model using X as training data and y as target values


	Parameters

	
	X{array-like, sparse matrix, BallTree, KDTree}
	Training data. If array or matrix, shape [n_samples, n_features],
or [n_samples, n_samples] if metric=’precomputed’.



	y{array-like, sparse matrix}
	
	Target values, array of float values, shape = [n_samples]
	or [n_samples, n_outputs]


















	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
kcandidates(X=None, n_neighbors=None, return_distance=True) → numpy.ndarray[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L433]

	Finds the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.


	Parameters

	
	Xarray-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors to get (default is the value
passed to the constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns

	
	distarray
	Array representing the lengths to points, only present if
return_distance=True



	indarray
	Indices of the nearest points in the population matrix.









Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]])) 
(array([[0.5]]), array([[2]]))





As you can see, it returns [[0.5]], and [[2]], which means that the
element is at distance 0.5 and is the third element of samples
(indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False) 
array([[1],
       [2]]...)










	
kneighbors(X=None, n_neighbors=None, return_distance=True)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L613]

	TODO






	
kneighbors_graph(X=None, n_neighbors=None, mode='connectivity')

	Computes the (weighted) graph of k-Neighbors for points in X


	Parameters

	
	Xarray-like, shape (n_queries, n_features),                 or (n_queries, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors for each sample.
(default is value passed to the constructor).



	mode{‘connectivity’, ‘distance’}, optional
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are Euclidean distance between points.







	Returns

	
	Asparse graph in CSR format, shape = [n_queries, n_samples_fit]
	n_samples_fit is the number of samples in the fitted data
A[i, j] is assigned the weight of edge that connects i to j.










See also


	NearestNeighbors.radius_neighbors_graph
	





Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 1.],
       [1., 0., 1.]])










	
predict(X)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/regression.py#L176]

	Predict the target for the provided data


	Parameters

	
	X: array-like, shape (n_query, n_features),                 or (n_query, n_indexed) if metric == ‘precomputed’
	Test samples.







	Returns

	
	y: array of int, shape = [n_samples] or [n_samples, n_outputs]
	Target values














	
score(X, y, sample_weight=None)

	Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual
sum of squares ((y_true - y_pred) ** 2).sum() and v is the total
sum of squares ((y_true - y_true.mean()) ** 2).sum().
The best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features,
would get a R^2 score of 0.0.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	Test samples. For some estimators this may be a
precomputed kernel matrix or a list of generic objects instead,
shape = (n_samples, n_samples_fitted),
where n_samples_fitted is the number of
samples used in the fitting for the estimator.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True values for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns

	
	scorefloat
	R^2 of self.predict(X) wrt. y.









Notes

The R2 score used when calling score on a regressor uses
multioutput='uniform_average' from version 0.23 to keep consistent
with default value of r2_score().
This influences the score method of all the multioutput
regressors (except for
MultiOutputRegressor).






	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.FalconnLSH


	
class skhubness.neighbors.FalconnLSH(n_candidates: int = 5, radius: float = 1.0, metric: str = 'euclidean', num_probes: int = 50, n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lsh.py#L243]

	Wrapper for using falconn LSH

Falconn is an approximate nearest neighbor library,
that uses multiprobe locality-sensitive hashing.


	Parameters

	
	n_candidates: int, default = 5
	Number of neighbors to retrieve



	radius: float or None, optional, default = None
	Retrieve neighbors within this radius.
Can be negative: See Notes.



	metric: str, default = ‘euclidean’
	Distance metric, allowed are “angular”, “euclidean”, “manhattan”, “hamming”, “dot”



	num_probes: int, default = 50
	The number of buckets the query algorithm probes.
The higher number of probes is, the better accuracy one gets,
but the slower queries are.



	n_jobs: int, default = 1
	Number of parallel jobs



	verbose: int, default = 0
	Verbosity level. If verbose > 0, show tqdm progress bar on indexing and querying.









Notes

From the falconn docs: radius can be negative, and for the distance function
‘negative_inner_product’ it actually makes sense.


	Attributes

	
	valid_metrics:
	List of valid distance metrics/measures










	
__init__(n_candidates: int = 5, radius: float = 1.0, metric: str = 'euclidean', num_probes: int = 50, n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lsh.py#L280]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_candidates, radius, metric, …])

	Initialize self.



	fit(X[, y])

	Setup the LSH index from training data.



	kneighbors([X, n_candidates, return_distance])

	Retrieve k nearest neighbors.



	radius_neighbors([X, radius, return_distance])

	Retrieve neighbors within a certain radius.






Attributes







	valid_metrics

	







	
fit(X: numpy.ndarray, y: Optional[numpy.ndarray] = None) → skhubness.neighbors.lsh.FalconnLSH[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lsh.py#L295]

	Setup the LSH index from training data.


	Parameters

	
	X: np.array
	Data to be indexed



	y: any
	Ignored







	Returns

	
	self: FalconnLSH
	An instance of LSH with a built index














	
kneighbors(X: Optional[numpy.ndarray] = None, n_candidates: Optional[int] = None, return_distance: bool = True) → Union[Tuple[numpy.array, numpy.array], numpy.array][source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lsh.py#L338]

	Retrieve k nearest neighbors.


	Parameters

	
	X: np.array or None, optional, default = None
	Query objects. If None, search among the indexed objects.



	n_candidates: int or None, optional, default = None
	Number of neighbors to retrieve.
If None, use the value passed during construction.



	return_distance: bool, default = True
	If return_distance, will return distances and indices to neighbors.
Else, only return the indices.














	
radius_neighbors(X: Optional[numpy.ndarray] = None, radius: Optional[float] = None, return_distance: bool = True) → Union[Tuple[numpy.array, numpy.array], numpy.array][source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lsh.py#L423]

	Retrieve neighbors within a certain radius.


	Parameters

	
	X: np.array or None, optional, default = None
	Query objects. If None, search among the indexed objects.



	radius: float or None, optional, default = None
	Retrieve neighbors within this radius.
Can be negative: See Notes.



	return_distance: bool, default = True
	If return_distance, will return distances and indices to neighbors.
Else, only return the indices.









Notes

From the falconn docs: radius can be negative, and for the distance function
‘negative_inner_product’ it actually makes sense.













            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.NearestCentroid


	
class skhubness.neighbors.NearestCentroid(**kwargs)

	Nearest centroid classifier.

Each class is represented by its centroid, with test samples classified to
the class with the nearest centroid.

Read more in the scikit-learn User Guide [https://scikit-learn.org/stable/modules/neighbors.html#nearest-centroid-classifier].


	Parameters

	
	metricstr or callable
	The metric to use when calculating distance between instances in a
feature array. If metric is a string or callable, it must be one of
the options allowed by metrics.pairwise.pairwise_distances for its
metric parameter.
The centroids for the samples corresponding to each class is the point
from which the sum of the distances (according to the metric) of all
samples that belong to that particular class are minimized.
If the “manhattan” metric is provided, this centroid is the median and
for all other metrics, the centroid is now set to be the mean.


Changed in version 0.19: metric='precomputed' was deprecated and now raises an error





	shrink_thresholdfloat, default=None
	Threshold for shrinking centroids to remove features.










See also


	sklearn.neighbors.KNeighborsClassifier
	nearest neighbors classifier







Notes

When used for text classification with tf-idf vectors, this classifier is
also known as the Rocchio classifier.

References

Tibshirani, R., Hastie, T., Narasimhan, B., & Chu, G. (2002). Diagnosis of
multiple cancer types by shrunken centroids of gene expression. Proceedings
of the National Academy of Sciences of the United States of America,
99(10), 6567-6572. The National Academy of Sciences.

Examples

>>> from sklearn.neighbors import NearestCentroid
>>> import numpy as np
>>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
>>> y = np.array([1, 1, 1, 2, 2, 2])
>>> clf = NearestCentroid()
>>> clf.fit(X, y)
NearestCentroid()
>>> print(clf.predict([[-0.8, -1]]))
[1]






	Attributes

	
	centroids_array-like of shape (n_classes, n_features)
	Centroid of each class.



	classes_array of shape (n_classes,)
	The unique classes labels.










	
__init__(metric='euclidean', *, shrink_threshold=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([metric, shrink_threshold])

	Initialize self.



	fit(X, y)

	Fit the NearestCentroid model according to the given training data.



	get_params([deep])

	Get parameters for this estimator.



	predict(X)

	Perform classification on an array of test vectors X.



	score(X, y[, sample_weight])

	Return the mean accuracy on the given test data and labels.



	set_params(**params)

	Set the parameters of this estimator.







	
fit(X, y)

	Fit the NearestCentroid model according to the given training data.


	Parameters

	
	X{array-like, sparse matrix} of shape (n_samples, n_features)
	Training vector, where n_samples is the number of samples and
n_features is the number of features.
Note that centroid shrinking cannot be used with sparse matrices.



	yarray-like of shape (n_samples,)
	Target values (integers)














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
predict(X)

	Perform classification on an array of test vectors X.

The predicted class C for each sample in X is returned.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	





	Returns

	
	Cndarray of shape (n_samples,)
	







Notes

If the metric constructor parameter is “precomputed”, X is assumed to
be the distance matrix between the data to be predicted and
self.centroids_.






	
score(X, y, sample_weight=None)

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	Test samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True labels for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns

	
	scorefloat
	Mean accuracy of self.predict(X) wrt. y.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.NearestNeighbors


	
class skhubness.neighbors.NearestNeighbors(n_neighbors=5, radius=1.0, algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/unsupervised.py#L11]

	Unsupervised learner for implementing neighbor searches.

Read more in the
scikit-learn User Guide [https://scikit-learn.org/stable/modules/neighbors.html#unsupervised-neighbors]


	Parameters

	
	n_neighbors: int, optional (default = 5)
	Number of neighbors to use by default for kneighbors() queries.



	radius: float, optional (default = 1.0)
	Range of parameter space to use by default for radius_neighbors()
queries.



	algorithm{‘auto’, ‘hnsw’, ‘lsh’, ‘falconn_lsh’, ‘nng’, ‘rptree’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
	Algorithm used to compute the nearest neighbors:


	‘hnsw’ will use HNSW


	‘lsh’ will use PuffinnLSH


	‘falconn_lsh’ will use FalconnLSH


	‘nng’ will use NNG


	‘rptree’ will use RandomProjectionTree


	‘ball_tree’ will use BallTree


	‘kd_tree’ will use KDTree


	‘brute’ will use a brute-force search.


	‘auto’ will attempt to decide the most appropriate exact algorithm
based on the values passed to fit() method. This will not
select an approximate nearest neighbor algorithm.




Note: fitting on sparse input will override the setting of
this parameter, using brute force.



	algorithm_params: dict, optional
	Override default parameters of the NN algorithm.
For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100}
one hundred approximate neighbors are retrieved with LSH.
If parameter hubness is set, the candidate neighbors are further reordered
with hubness reduction.
Finally, n_neighbors objects are used from the (optionally reordered) candidates.



	hubness: {‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional
	Hubness reduction algorithm


	‘mutual_proximity’ or ‘mp’ will use MutualProximity


	‘local_scaling’ or ‘ls’ will use LocalScaling


	‘dis_sim_local’ or ‘dsl’ will use DisSimLocal




If None, no hubness reduction will be performed (=vanilla kNN).



	hubness_params: dict, optional
	Override default parameters of the selected hubness reduction algorithm.
For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’}
a mutual proximity variant is used, which models distance distributions
with independent Gaussians.



	leaf_size: int, optional (default = 30)
	Leaf size passed to BallTree or KDTree.  This can affect the
speed of the construction and query, as well as the memory
required to store the tree.  The optimal value depends on the
nature of the problem.



	metric: string or callable, default ‘minkowski’
	metric to use for distance computation. Any metric from scikit-learn
or scipy.spatial.distance can be used.

If metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays as input and return one value indicating the
distance between them. This works for Scipy’s metrics, but is less
efficient than passing the metric name as a string.

Distance matrices are not supported.

Valid values for metric are:


	from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’,
‘manhattan’]


	from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’,
‘correlation’, ‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’,
‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’,
‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’,
‘yule’]




See the documentation for scipy.spatial.distance for details on these
metrics.



	p: integer, optional (default = 2)
	Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.



	metric_params: dict, optional (default = None)
	Additional keyword arguments for the metric function.



	n_jobs: int or None, optional (default=None)
	The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.
See Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs] for more details.










See also


	KNeighborsClassifier
	

	RadiusNeighborsClassifier
	

	KNeighborsRegressor
	

	RadiusNeighborsRegressor
	

	BallTree
	





Notes

See Nearest Neighbors [https://scikit-learn.org/stable/modules/neighbors.html#neighbors]
in the scikit-learn online documentation for a discussion
of the choice of algorithm and leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> import numpy as np
>>> from skhubness.neighbors import NearestNeighbors
>>> samples = [[0, 0, 2], [1, 0, 0], [0, 0, 1]]





>>> neigh = NearestNeighbors(2, 0.4)
>>> neigh.fit(samples)  
NearestNeighbors(...)





>>> neigh.kneighbors([[0, 0, 1.3]], 2, return_distance=False)
... 
array([[2, 0]]...)





>>> nbrs = neigh.radius_neighbors([[0, 0, 1.3]], 0.4, return_distance=False)
>>> np.asarray(nbrs[0][0])
array(2)






	
__init__(n_neighbors=5, radius=1.0, algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, metric='minkowski', p=2, metric_params=None, n_jobs=None, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/unsupervised.py#L150]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_neighbors, radius, algorithm, …])

	Initialize self.



	fit(X[, y])

	Fit the model using X as training data



	get_params([deep])

	Get parameters for this estimator.



	kcandidates([X, n_neighbors, return_distance])

	Finds the K-neighbors of a point.



	kneighbors([X, n_neighbors, return_distance])

	TODO



	kneighbors_graph([X, n_neighbors, mode])

	Computes the (weighted) graph of k-Neighbors for points in X



	radius_neighbors([X, radius, return_distance])

	Finds the neighbors within a given radius of a point or points.



	radius_neighbors_graph([X, radius, mode])

	Computes the (weighted) graph of Neighbors for points in X



	set_params(**params)

	Set the parameters of this estimator.







	
fit(X, y=None)

	Fit the model using X as training data


	Parameters

	
	X{array-like, sparse matrix, BallTree, KDTree}
	Training data. If array or matrix, shape [n_samples, n_features],
or [n_samples, n_samples] if metric=’precomputed’.














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
kcandidates(X=None, n_neighbors=None, return_distance=True) → numpy.ndarray[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L433]

	Finds the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.


	Parameters

	
	Xarray-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors to get (default is the value
passed to the constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns

	
	distarray
	Array representing the lengths to points, only present if
return_distance=True



	indarray
	Indices of the nearest points in the population matrix.









Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]])) 
(array([[0.5]]), array([[2]]))





As you can see, it returns [[0.5]], and [[2]], which means that the
element is at distance 0.5 and is the third element of samples
(indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False) 
array([[1],
       [2]]...)










	
kneighbors(X=None, n_neighbors=None, return_distance=True)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L613]

	TODO






	
kneighbors_graph(X=None, n_neighbors=None, mode='connectivity')

	Computes the (weighted) graph of k-Neighbors for points in X


	Parameters

	
	Xarray-like, shape (n_queries, n_features),                 or (n_queries, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors for each sample.
(default is value passed to the constructor).



	mode{‘connectivity’, ‘distance’}, optional
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are Euclidean distance between points.







	Returns

	
	Asparse graph in CSR format, shape = [n_queries, n_samples_fit]
	n_samples_fit is the number of samples in the fitted data
A[i, j] is assigned the weight of edge that connects i to j.










See also


	NearestNeighbors.radius_neighbors_graph
	





Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 1.],
       [1., 0., 1.]])










	
radius_neighbors(X=None, radius=None, return_distance=True)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L672]

	Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset
lying in a ball with size radius around the points of the query
array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their
query point.


	Parameters

	
	Xarray-like, (n_samples, n_features), optional
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	radiusfloat
	Limiting distance of neighbors to return.
(default is the value passed to the constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns

	
	distarray, shape (n_samples,) of arrays
	Array representing the distances to each point, only present if
return_distance=True. The distance values are computed according
to the metric constructor parameter.



	indarray, shape (n_samples,) of arrays
	An array of arrays of indices of the approximate nearest points
from the population matrix that lie within a ball of size
radius around the query points.









Notes

Because the number of neighbors of each point is not necessarily
equal, the results for multiple query points cannot be fit in a
standard data array.
For efficiency, radius_neighbors returns arrays of objects, where
each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0])) 
[1.5 0.5]
>>> print(np.asarray(rng[1][0])) 
[1 2]





The first array returned contains the distances to all points which
are closer than 1.6, while the second array returned contains their
indices.  In general, multiple points can be queried at the same time.






	
radius_neighbors_graph(X=None, radius=None, mode='connectivity')[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L846]

	Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than
radius.


	Parameters

	
	Xarray-like, shape = [n_samples, n_features], optional
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	radiusfloat
	Radius of neighborhoods.
(default is the value passed to the constructor).



	mode{‘connectivity’, ‘distance’}, optional
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are Euclidean distance between points.







	Returns

	
	Asparse matrix in CSR format, shape = [n_samples, n_samples]
	A[i, j] is assigned the weight of edge that connects i to j.










See also


	kneighbors_graph
	





Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 0.],
       [1., 0., 1.]])










	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.NNG


	
class skhubness.neighbors.NNG(n_candidates: int = 5, metric: str = 'euclidean', index_dir: str = 'auto', optimize: bool = False, edge_size_for_creation: int = 80, edge_size_for_search: int = 40, num_incoming: int = - 1, num_outgoing: int = - 1, epsilon: float = 0.1, n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/nng.py#L27]

	Wrapper for ngtpy and NNG variants.

By default, the graph is an ANNG. Only when the optimize parameter is set,
the graph is optimized to obtain an ONNG.


	Parameters

	
	n_candidates: int, default = 5
	Number of neighbors to retrieve



	metric: str, default = ‘euclidean’
	Distance metric, allowed are ‘manhattan’, ‘L1’, ‘euclidean’, ‘L2’, ‘minkowski’,
‘Angle’, ‘Normalized Angle’, ‘Hamming’, ‘Jaccard’, ‘Cosine’ or ‘Normalized Cosine’.



	index_dir: str, default = ‘auto’
	Store the index in the given directory.
If None, keep the index in main memory (NON pickleable index),
If index_dir is a string, it is interpreted as a directory to store the index into,
if ‘auto’, create a temp dir for the index, preferably in /dev/shm on Linux.
Note: The directory/the index will NOT be deleted automatically.



	optimize: bool, default = False
	Use ONNG method by optimizing the ANNG graph.
May require long time for index creation.



	edge_size_for_creation: int, default = 80
	Increasing ANNG edge size improves retrieval accuracy at the cost of more time



	edge_size_for_search: int, default = 40
	Increasing ANNG edge size improves retrieval accuracy at the cost of more time



	epsilon: float, default 0.1
	Trade-off in ANNG between higher accuracy (larger epsilon) and shorter query time (smaller epsilon)



	num_incoming: int
	Number of incoming edges in ONNG graph



	num_outgoing: int
	Number of outgoing edges in ONNG graph



	n_jobs: int, default = 1
	Number of parallel jobs



	verbose: int, default = 0
	Verbosity level. If verbose > 0, show tqdm progress bar on indexing and querying.









Notes

NNG stores the index to a directory specified in index_dir.
The index is persistent, and will NOT be deleted automatically.
It is the user’s responsibility to take care of deletion,
when required.


	Attributes

	
	valid_metrics:
	List of valid distance metrics/measures










	
__init__(n_candidates: int = 5, metric: str = 'euclidean', index_dir: str = 'auto', optimize: bool = False, edge_size_for_creation: int = 80, edge_size_for_search: int = 40, num_incoming: int = - 1, num_outgoing: int = - 1, epsilon: float = 0.1, n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/nng.py#L84]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_candidates, metric, index_dir, …])

	Initialize self.



	fit(X[, y])

	Build the ngtpy.Index and insert data from X.



	get_params([deep])

	Get parameters for this estimator.



	kneighbors([X, n_candidates, return_distance])

	Retrieve k nearest neighbors.



	set_params(**params)

	Set the parameters of this estimator.






Attributes







	internal_distance_type

	



	valid_metrics

	







	
fit(X, y=None) → skhubness.neighbors.nng.NNG[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/nng.py#L113]

	Build the ngtpy.Index and insert data from X.


	Parameters

	
	X: np.array
	Data to be indexed



	y: any
	Ignored







	Returns

	
	self: NNG
	An instance of NNG with a built index














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
kneighbors(X=None, n_candidates=None, return_distance=True) → Union[Tuple[numpy.array, numpy.array], numpy.array][source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/nng.py#L196]

	Retrieve k nearest neighbors.


	Parameters

	
	X: np.array or None, optional, default = None
	Query objects. If None, search among the indexed objects.



	n_candidates: int or None, optional, default = None
	Number of neighbors to retrieve.
If None, use the value passed during construction.



	return_distance: bool, default = True
	If return_distance, will return distances and indices to neighbors.
Else, only return the indices.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.PuffinnLSH


	
class skhubness.neighbors.PuffinnLSH(n_candidates: int = 5, metric: str = 'euclidean', memory: int = 1073741824, recall: float = 0.9, n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lsh.py#L33]

	Wrap Puffinn LSH for scikit-learn compatibility.


	Parameters

	
	n_candidates: int, default = 5
	Number of neighbors to retrieve



	metric: str, default = ‘euclidean’
	Distance metric, allowed are “angular”, “jaccard”.
Other metrics are partially supported, such as ‘euclidean’, ‘sqeuclidean’.
In these cases, ‘angular’ distances are used to find the candidate set
of neighbors with LSH among all indexed objects, and (squared) Euclidean
distances are subsequently only computed for the candidates.



	memory: int, default = 1GB
	Max memory usage



	recall: float, default = 0.90
	Probability of finding the true nearest neighbors among the candidates



	n_jobs: int, default = 1
	Number of parallel jobs



	verbose: int, default = 0
	Verbosity level. If verbose > 0, show tqdm progress bar on indexing and querying.







	Attributes

	
	valid_metrics:
	List of valid distance metrics/measures










	
__init__(n_candidates: int = 5, metric: str = 'euclidean', memory: int = 1073741824, recall: float = 0.9, n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lsh.py#L69]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_candidates, metric, memory, …])

	Initialize self.



	fit(X[, y])

	Build the puffinn LSH index and insert data from X.



	get_params([deep])

	Get parameters for this estimator.



	kneighbors([X, n_candidates, return_distance])

	Retrieve k nearest neighbors.



	set_params(**params)

	Set the parameters of this estimator.






Attributes







	metric_map

	



	valid_metrics

	







	
fit(X, y=None) → skhubness.neighbors.lsh.PuffinnLSH[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lsh.py#L92]

	Build the puffinn LSH index and insert data from X.


	Parameters

	
	X: np.array
	Data to be indexed



	y: any
	Ignored







	Returns

	
	self: Puffinn
	An instance of Puffinn with a built index














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
kneighbors(X=None, n_candidates=None, return_distance=True) → Union[Tuple[numpy.array, numpy.array], numpy.array][source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lsh.py#L144]

	Retrieve k nearest neighbors.


	Parameters

	
	X: np.array or None, optional, default = None
	Query objects. If None, search among the indexed objects.



	n_candidates: int or None, optional, default = None
	Number of neighbors to retrieve.
If None, use the value passed during construction.



	return_distance: bool, default = True
	If return_distance, will return distances and indices to neighbors.
Else, only return the indices.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.RadiusNeighborsClassifier


	
class skhubness.neighbors.RadiusNeighborsClassifier(radius=1.0, weights='uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, p=2, metric='minkowski', outlier_label=None, metric_params=None, n_jobs=None, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/classification.py#L268]

	Classifier implementing a vote among neighbors within a given radius

Read more in the scikit-learn User Guide [https://scikit-learn.org/stable/modules/neighbors.html#classification]


	Parameters

	
	radius: float, optional (default = 1.0)
	Range of parameter space to use by default for radius_neighbors()
queries.



	weights: str or callable
	weight function used in prediction.  Possible values:


	‘uniform’: uniform weights.  All points in each neighborhood
are weighted equally.


	‘distance’: weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.


	[callable]: a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.




Uniform weights are used by default.



	algorithm: {‘auto’, ‘falconn_lsh’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
	Algorithm used to compute the nearest neighbors:


	‘falconn_lsh’ will use FalconnLSH


	‘ball_tree’ will use BallTree


	‘kd_tree’ will use KDTree


	‘brute’ will use a brute-force search.


	‘auto’ will attempt to decide the most appropriate algorithm
based on the values passed to fit() method.




Note: fitting on sparse input will override the setting of
this parameter, using brute force.



	algorithm_params: dict, optional
	Override default parameters of the NN algorithm.
For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100}
one hundred approximate neighbors are retrieved with LSH.
If parameter hubness is set, the candidate neighbors are further reordered
with hubness reduction.
Finally, n_neighbors objects are used from the (optionally reordered) candidates.



	hubness: {‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional
	Hubness reduction algorithm


	‘mutual_proximity’ or ‘mp’ will use MutualProximity


	‘local_scaling’ or ‘ls’ will use LocalScaling


	‘dis_sim_local’ or ‘dsl’ will use DisSimLocal




If None, no hubness reduction will be performed (=vanilla kNN).



	hubness_params: dict, optional
	Override default parameters of the selected hubness reduction algorithm.
For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’}
a mutual proximity variant is used, which models distance distributions
with independent Gaussians.



	leaf_size: int, optional (default = 30)
	Leaf size passed to BallTree or KDTree.  This can affect the
speed of the construction and query, as well as the memory
required to store the tree.  The optimal value depends on the
nature of the problem.



	p: integer, optional (default = 2)
	Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.



	metric: string or callable, default ‘minkowski’
	the distance metric to use for the tree.  The default metric is
minkowski, and with p=2 is equivalent to the standard Euclidean
metric. See the documentation of the DistanceMetric class for a
list of available metrics.



	outlier_label: int, optional (default = None)
	Label, which is given for outlier samples (samples with no
neighbors on given radius).
If set to None, ValueError is raised, when outlier is detected.



	metric_params: dict, optional (default = None)
	Additional keyword arguments for the metric function.



	n_jobs: int or None, optional (default=None)
	The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.
See Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.










See also


	KNeighborsClassifier
	

	RadiusNeighborsRegressor
	

	KNeighborsRegressor
	

	NearestNeighbors
	





Notes

See Nearest Neighbors [https://scikit-learn.org/stable/modules/neighbors.html#neighbors]
in the scikit-learn online documentation for a discussion
of the choice of algorithm and leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from skhubness.neighbors import RadiusNeighborsClassifier
>>> neigh = RadiusNeighborsClassifier(radius=1.0)
>>> neigh.fit(X, y) 
RadiusNeighborsClassifier(...)
>>> print(neigh.predict([[1.5]]))
[0]






	
__init__(radius=1.0, weights='uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, p=2, metric='minkowski', outlier_label=None, metric_params=None, n_jobs=None, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/classification.py#L390]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([radius, weights, algorithm, …])

	Initialize self.



	fit(X, y)

	Fit the model using X as training data and y as target values



	get_params([deep])

	Get parameters for this estimator.



	kcandidates([X, n_neighbors, return_distance])

	Finds the K-neighbors of a point.



	predict(X)

	Predict the class labels for the provided data



	radius_neighbors([X, radius, return_distance])

	Finds the neighbors within a given radius of a point or points.



	radius_neighbors_graph([X, radius, mode])

	Computes the (weighted) graph of Neighbors for points in X



	score(X, y[, sample_weight])

	Return the mean accuracy on the given test data and labels.



	set_params(**params)

	Set the parameters of this estimator.







	
fit(X, y)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L964]

	Fit the model using X as training data and y as target values


	Parameters

	
	X{array-like, sparse matrix, BallTree, KDTree, HNSW, FalconnLSH, PuffinLSH, NNG, RandomProjectionTree}
	Training data. If array or matrix, shape [n_samples, n_features],
or [n_samples, n_samples] if metric=’precomputed’.



	y{array-like, sparse matrix}
	Target values of shape = [n_samples] or [n_samples, n_outputs]














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
kcandidates(X=None, n_neighbors=None, return_distance=True) → numpy.ndarray[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L433]

	Finds the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.


	Parameters

	
	Xarray-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors to get (default is the value
passed to the constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns

	
	distarray
	Array representing the lengths to points, only present if
return_distance=True



	indarray
	Indices of the nearest points in the population matrix.









Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]])) 
(array([[0.5]]), array([[2]]))





As you can see, it returns [[0.5]], and [[2]], which means that the
element is at distance 0.5 and is the third element of samples
(indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False) 
array([[1],
       [2]]...)










	
predict(X)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/classification.py#L408]

	Predict the class labels for the provided data


	Parameters

	
	X: array-like, shape (n_query, n_features),                 or (n_query, n_indexed) if metric == ‘precomputed’
	Test samples.







	Returns

	
	y: array of shape [n_samples] or [n_samples, n_outputs]
	Class labels for each data sample.














	
radius_neighbors(X=None, radius=None, return_distance=True)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L672]

	Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset
lying in a ball with size radius around the points of the query
array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their
query point.


	Parameters

	
	Xarray-like, (n_samples, n_features), optional
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	radiusfloat
	Limiting distance of neighbors to return.
(default is the value passed to the constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns

	
	distarray, shape (n_samples,) of arrays
	Array representing the distances to each point, only present if
return_distance=True. The distance values are computed according
to the metric constructor parameter.



	indarray, shape (n_samples,) of arrays
	An array of arrays of indices of the approximate nearest points
from the population matrix that lie within a ball of size
radius around the query points.









Notes

Because the number of neighbors of each point is not necessarily
equal, the results for multiple query points cannot be fit in a
standard data array.
For efficiency, radius_neighbors returns arrays of objects, where
each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0])) 
[1.5 0.5]
>>> print(np.asarray(rng[1][0])) 
[1 2]





The first array returned contains the distances to all points which
are closer than 1.6, while the second array returned contains their
indices.  In general, multiple points can be queried at the same time.






	
radius_neighbors_graph(X=None, radius=None, mode='connectivity')[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L846]

	Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than
radius.


	Parameters

	
	Xarray-like, shape = [n_samples, n_features], optional
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	radiusfloat
	Radius of neighborhoods.
(default is the value passed to the constructor).



	mode{‘connectivity’, ‘distance’}, optional
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are Euclidean distance between points.







	Returns

	
	Asparse matrix in CSR format, shape = [n_samples, n_samples]
	A[i, j] is assigned the weight of edge that connects i to j.










See also


	kneighbors_graph
	





Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 0.],
       [1., 0., 1.]])










	
score(X, y, sample_weight=None)

	Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy
which is a harsh metric since you require for each sample that
each label set be correctly predicted.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	Test samples.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True labels for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns

	
	scorefloat
	Mean accuracy of self.predict(X) wrt. y.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.RadiusNeighborsRegressor


	
class skhubness.neighbors.RadiusNeighborsRegressor(radius=1.0, weights='uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/regression.py#L221]

	Regression based on neighbors within a fixed radius.

The target is predicted by local interpolation of the targets
associated of the nearest neighbors in the training set.

Read more in the scikit-learn User Guide [https://scikit-learn.org/stable/modules/neighbors.html#regression].


	Parameters

	
	radius: float, optional (default = 1.0)
	Range of parameter space to use by default for radius_neighbors()
queries.



	weights: str or callable
	weight function used in prediction.  Possible values:


	‘uniform’: uniform weights.  All points in each neighborhood
are weighted equally.


	‘distance’: weight points by the inverse of their distance.
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away.


	[callable]: a user-defined function which accepts an
array of distances, and returns an array of the same shape
containing the weights.




Uniform weights are used by default.



	algorithm: {‘auto’, ‘falconn_lsh’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
	Algorithm used to compute the nearest neighbors:


	‘falconn_lsh’ will use FalconnLSH


	‘ball_tree’ will use BallTree


	‘kd_tree’ will use KDTree


	‘brute’ will use a brute-force search.


	‘auto’ will attempt to decide the most appropriate algorithm
based on the values passed to fit() method.




Note: fitting on sparse input will override the setting of
this parameter, using brute force.



	algorithm_params: dict, optional
	Override default parameters of the NN algorithm.
For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100}
one hundred approximate neighbors are retrieved with LSH.
If parameter hubness is set, the candidate neighbors are further reordered
with hubness reduction.
Finally, n_neighbors objects are used from the (optionally reordered) candidates.



	hubness: {‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional
	Hubness reduction algorithm


	‘mutual_proximity’ or ‘mp’ will use MutualProximity


	‘local_scaling’ or ‘ls’ will use LocalScaling


	‘dis_sim_local’ or ‘dsl’ will use DisSimLocal




If None, no hubness reduction will be performed (=vanilla kNN).



	hubness_params: dict, optional
	Override default parameters of the selected hubness reduction algorithm.
For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’}
a mutual proximity variant is used, which models distance distributions
with independent Gaussians.



	leaf_size: int, optional (default = 30)
	Leaf size passed to BallTree or KDTree.  This can affect the
speed of the construction and query, as well as the memory
required to store the tree.  The optimal value depends on the
nature of the problem.



	p: integer, optional (default = 2)
	Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.



	metric: string or callable, default ‘minkowski’
	the distance metric to use for the tree.  The default metric is
minkowski, and with p=2 is equivalent to the standard Euclidean
metric. See the documentation of the DistanceMetric class for a
list of available metrics.



	metric_params: dict, optional (default = None)
	Additional keyword arguments for the metric function.



	n_jobs: int or None, optional (default=None)
	The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See scikit-learn
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.










See also


	NearestNeighbors
	

	KNeighborsRegressor
	

	KNeighborsClassifier
	

	RadiusNeighborsClassifier
	





Notes

See Nearest Neighbors [https://scikit-learn.org/stable/modules/neighbors.html#neighbors]
in the scikit-learn online documentation for a discussion
of the choice of algorithm and leaf_size.

https://en.wikipedia.org/wiki/K-nearest_neighbor_algorithm

Examples

>>> X = [[0], [1], [2], [3]]
>>> y = [0, 0, 1, 1]
>>> from skhubness.neighbors import RadiusNeighborsRegressor
>>> neigh = RadiusNeighborsRegressor(radius=1.0)
>>> neigh.fit(X, y) 
RadiusNeighborsRegressor(...)
>>> print(neigh.predict([[1.5]]))
[0.5]






	
__init__(radius=1.0, weights='uniform', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, leaf_size=30, p=2, metric='minkowski', metric_params=None, n_jobs=None, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/regression.py#L341]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([radius, weights, algorithm, …])

	Initialize self.



	fit(X, y)

	Fit the model using X as training data and y as target values



	get_params([deep])

	Get parameters for this estimator.



	kcandidates([X, n_neighbors, return_distance])

	Finds the K-neighbors of a point.



	predict(X)

	Predict the target for the provided data



	radius_neighbors([X, radius, return_distance])

	Finds the neighbors within a given radius of a point or points.



	radius_neighbors_graph([X, radius, mode])

	Computes the (weighted) graph of Neighbors for points in X



	score(X, y[, sample_weight])

	Return the coefficient of determination R^2 of the prediction.



	set_params(**params)

	Set the parameters of this estimator.







	
fit(X, y)

	Fit the model using X as training data and y as target values


	Parameters

	
	X{array-like, sparse matrix, BallTree, KDTree}
	Training data. If array or matrix, shape [n_samples, n_features],
or [n_samples, n_samples] if metric=’precomputed’.



	y{array-like, sparse matrix}
	
	Target values, array of float values, shape = [n_samples]
	or [n_samples, n_outputs]


















	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
kcandidates(X=None, n_neighbors=None, return_distance=True) → numpy.ndarray[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L433]

	Finds the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.


	Parameters

	
	Xarray-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors to get (default is the value
passed to the constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns

	
	distarray
	Array representing the lengths to points, only present if
return_distance=True



	indarray
	Indices of the nearest points in the population matrix.









Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]])) 
(array([[0.5]]), array([[2]]))





As you can see, it returns [[0.5]], and [[2]], which means that the
element is at distance 0.5 and is the third element of samples
(indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False) 
array([[1],
       [2]]...)










	
predict(X)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/regression.py#L357]

	Predict the target for the provided data


	Parameters

	
	X: array-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’
	Test samples.







	Returns

	
	y: array of float, shape = [n_samples] or [n_samples, n_outputs]
	Target values














	
radius_neighbors(X=None, radius=None, return_distance=True)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L672]

	Finds the neighbors within a given radius of a point or points.

Return the indices and distances of each point from the dataset
lying in a ball with size radius around the points of the query
array. Points lying on the boundary are included in the results.

The result points are not necessarily sorted by distance to their
query point.


	Parameters

	
	Xarray-like, (n_samples, n_features), optional
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	radiusfloat
	Limiting distance of neighbors to return.
(default is the value passed to the constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns

	
	distarray, shape (n_samples,) of arrays
	Array representing the distances to each point, only present if
return_distance=True. The distance values are computed according
to the metric constructor parameter.



	indarray, shape (n_samples,) of arrays
	An array of arrays of indices of the approximate nearest points
from the population matrix that lie within a ball of size
radius around the query points.









Notes

Because the number of neighbors of each point is not necessarily
equal, the results for multiple query points cannot be fit in a
standard data array.
For efficiency, radius_neighbors returns arrays of objects, where
each object is a 1D array of indices or distances.

Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1, 1, 1]:

>>> import numpy as np
>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.6)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> rng = neigh.radius_neighbors([[1., 1., 1.]])
>>> print(np.asarray(rng[0][0])) 
[1.5 0.5]
>>> print(np.asarray(rng[1][0])) 
[1 2]





The first array returned contains the distances to all points which
are closer than 1.6, while the second array returned contains their
indices.  In general, multiple points can be queried at the same time.






	
radius_neighbors_graph(X=None, radius=None, mode='connectivity')[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L846]

	Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than
radius.


	Parameters

	
	Xarray-like, shape = [n_samples, n_features], optional
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	radiusfloat
	Radius of neighborhoods.
(default is the value passed to the constructor).



	mode{‘connectivity’, ‘distance’}, optional
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are Euclidean distance between points.







	Returns

	
	Asparse matrix in CSR format, shape = [n_samples, n_samples]
	A[i, j] is assigned the weight of edge that connects i to j.










See also


	kneighbors_graph
	





Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(radius=1.5)
>>> neigh.fit(X) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> A = neigh.radius_neighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 0.],
       [1., 0., 1.]])










	
score(X, y, sample_weight=None)

	Return the coefficient of determination R^2 of the prediction.

The coefficient R^2 is defined as (1 - u/v), where u is the residual
sum of squares ((y_true - y_pred) ** 2).sum() and v is the total
sum of squares ((y_true - y_true.mean()) ** 2).sum().
The best possible score is 1.0 and it can be negative (because the
model can be arbitrarily worse). A constant model that always
predicts the expected value of y, disregarding the input features,
would get a R^2 score of 0.0.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	Test samples. For some estimators this may be a
precomputed kernel matrix or a list of generic objects instead,
shape = (n_samples, n_samples_fitted),
where n_samples_fitted is the number of
samples used in the fitting for the estimator.



	yarray-like of shape (n_samples,) or (n_samples, n_outputs)
	True values for X.



	sample_weightarray-like of shape (n_samples,), default=None
	Sample weights.







	Returns

	
	scorefloat
	R^2 of self.predict(X) wrt. y.









Notes

The R2 score used when calling score on a regressor uses
multioutput='uniform_average' from version 0.23 to keep consistent
with default value of r2_score().
This influences the score method of all the multioutput
regressors (except for
MultiOutputRegressor).






	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.RandomProjectionTree


	
class skhubness.neighbors.RandomProjectionTree(n_candidates: int = 5, metric: str = 'euclidean', n_trees: int = 10, search_k: int = - 1, mmap_dir: str = 'auto', n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/random_projection_trees.py#L27]

	Wrapper for using annoy.AnnoyIndex

Annoy is an approximate nearest neighbor library,
that builds a forest of random projections trees.


	Parameters

	
	n_candidates: int, default = 5
	Number of neighbors to retrieve



	metric: str, default = ‘euclidean’
	Distance metric, allowed are “angular”, “euclidean”, “manhattan”, “hamming”, “dot”



	n_trees: int, default = 10
	Build a forest of n_trees trees. More trees gives higher precision when querying,
but are more expensive in terms of build time and index size.



	search_k: int, default = -1
	Query will inspect search_k nodes. A larger value will give more accurate results,
but will take longer time.



	mmap_dir: str, default = ‘auto’
	Memory-map the index to the given directory.
This is required to make the the class pickleable.
If None, keep everything in main memory (NON pickleable index),
if mmap_dir is a string, it is interpreted as a directory to store the index into,
if ‘auto’, create a temp dir for the index, preferably in /dev/shm on Linux.



	n_jobs: int, default = 1
	Number of parallel jobs



	verbose: int, default = 0
	Verbosity level. If verbose > 0, show tqdm progress bar on indexing and querying.







	Attributes

	
	valid_metrics:
	List of valid distance metrics/measures










	
__init__(n_candidates: int = 5, metric: str = 'euclidean', n_trees: int = 10, search_k: int = - 1, mmap_dir: str = 'auto', n_jobs: int = 1, verbose: int = 0)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/random_projection_trees.py#L63]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_candidates, metric, n_trees, …])

	Initialize self.



	fit(X[, y])

	Build the annoy.Index and insert data from X.



	get_params([deep])

	Get parameters for this estimator.



	kneighbors([X, n_candidates, return_distance])

	Retrieve k nearest neighbors.



	set_params(**params)

	Set the parameters of this estimator.






Attributes







	valid_metrics

	







	
fit(X, y=None) → skhubness.neighbors.random_projection_trees.RandomProjectionTree[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/random_projection_trees.py#L80]

	Build the annoy.Index and insert data from X.


	Parameters

	
	X: np.array
	Data to be indexed



	y: any
	Ignored







	Returns

	
	self: RandomProjectionTree
	An instance of RandomProjectionTree with a built index














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
kneighbors(X=None, n_candidates=None, return_distance=True) → Union[Tuple[numpy.array, numpy.array], numpy.array][source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/random_projection_trees.py#L136]

	Retrieve k nearest neighbors.


	Parameters

	
	X: np.array or None, optional, default = None
	Query objects. If None, search among the indexed objects.



	n_candidates: int or None, optional, default = None
	Number of neighbors to retrieve.
If None, use the value passed during construction.



	return_distance: bool, default = True
	If return_distance, will return distances and indices to neighbors.
Else, only return the indices.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.kneighbors_graph


	
skhubness.neighbors.kneighbors_graph(X, n_neighbors, mode='connectivity', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, metric='minkowski', p=2, metric_params=None, include_self=False, n_jobs=None)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/graph.py#L37]

	Computes the (weighted) graph of k-Neighbors for points in X

Read more in the
scikit-learn User Guide [https://scikit-learn.org/stable/modules/neighbors.html#unsupervised-neighbors]


	Parameters

	
	X: array-like or BallTree, shape = [n_samples, n_features]
	Sample data, in the form of a numpy array or a precomputed
BallTree.



	n_neighbors: int
	Number of neighbors for each sample.



	mode: {‘connectivity’, ‘distance’}, optional
	Type of returned matrix: ‘connectivity’ will return the connectivity
matrix with ones and zeros, and ‘distance’ will return the distances
between neighbors according to the given metric.



	algorithm: {‘auto’, ‘hnsw’, ‘lsh’, ‘falconn_lsh’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
	Algorithm used to compute the nearest neighbors:


	‘hnsw’ will use HNSW


	‘lsh’ will use PuffinnLSH


	‘falconn_lsh’ will use FalconnLSH


	‘ball_tree’ will use BallTree


	‘kd_tree’ will use KDTree


	‘brute’ will use a brute-force search.


	‘auto’ will attempt to decide the most appropriate algorithm
based on the values passed to fit() method.




Note: fitting on sparse input will override the setting of
this parameter, using brute force.



	algorithm_params: dict, optional
	Override default parameters of the NN algorithm.
For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100}
one hundred approximate neighbors are retrieved with LSH.
If parameter hubness is set, the candidate neighbors are further reordered
with hubness reduction.
Finally, n_neighbors objects are used from the (optionally reordered) candidates.



	hubness: {‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional
	Hubness reduction algorithm


	‘mutual_proximity’ or ‘mp’ will use MutualProximity


	‘local_scaling’ or ‘ls’ will use LocalScaling


	‘dis_sim_local’ or ‘dsl’ will use DisSimLocal




If None, no hubness reduction will be performed (=vanilla kNN).



	hubness_params: dict, optional
	Override default parameters of the selected hubness reduction algorithm.
For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’}
a mutual proximity variant is used, which models distance distributions
with independent Gaussians.



	metric: string, default ‘minkowski’
	The distance metric used to calculate the k-Neighbors for each sample
point. The DistanceMetric class gives a list of available metrics.
The default distance is ‘euclidean’ (‘minkowski’ metric with the p
param equal to 2.)



	p: int, default 2
	Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.



	metric_params: dict, optional
	additional keyword arguments for the metric function.



	include_self: bool, default=False.
	Whether or not to mark each sample as the first nearest neighbor to
itself. If None, then True is used for mode=’connectivity’ and False
for mode=’distance’ as this will preserve backwards compatibility.



	n_jobs: int or None, optional (default=None)
	The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.
See Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs] for more details.







	Returns

	
	A: sparse matrix in CSR format, shape = [n_samples, n_samples]
	A[i, j] is assigned the weight of edge that connects i to j.










See also


	radius_neighbors_graph
	





Examples

>>> X = [[0], [3], [1]]
>>> from skhubness.neighbors import kneighbors_graph
>>> A = kneighbors_graph(X, 2, mode='connectivity', include_self=True)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 1.],
       [1., 0., 1.]])













            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.radius_neighbors_graph


	
skhubness.neighbors.radius_neighbors_graph(X, radius, mode='connectivity', algorithm: str = 'auto', algorithm_params: dict = None, hubness: str = None, hubness_params: dict = None, metric='minkowski', p=2, metric_params=None, include_self=False, n_jobs=None)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/graph.py#L160]

	Computes the (weighted) graph of Neighbors for points in X

Neighborhoods are restricted the points at a distance lower than
radius.

Read more in the
scikit-learn User Guide [https://scikit-learn.org/stable/modules/neighbors.html#unsupervised-neighbors]


	Parameters

	
	X: array-like or BallTree, shape = [n_samples, n_features]
	Sample data, in the form of a numpy array or a precomputed
BallTree.



	radius: float
	Radius of neighborhoods.



	mode: {‘connectivity’, ‘distance’}, optional
	Type of returned matrix: ‘connectivity’ will return the connectivity
matrix with ones and zeros, and ‘distance’ will return the distances
between neighbors according to the given metric.



	algorithm: {‘auto’, ‘falconn_lsh’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
	Algorithm used to compute the nearest neighbors:


	‘falconn_lsh’ will use FalconnLSH


	‘ball_tree’ will use BallTree


	‘kd_tree’ will use KDTree


	‘brute’ will use a brute-force search.


	‘auto’ will attempt to decide the most appropriate algorithm
based on the values passed to fit() method.




Note: fitting on sparse input will override the setting of
this parameter, using brute force.



	algorithm_params: dict, optional
	Override default parameters of the NN algorithm.
For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100}
one hundred approximate neighbors are retrieved with LSH.
If parameter hubness is set, the candidate neighbors are further reordered
with hubness reduction.
Finally, n_neighbors objects are used from the (optionally reordered) candidates.



	hubness: {‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional
	Hubness reduction algorithm


	‘mutual_proximity’ or ‘mp’ will use MutualProximity


	‘local_scaling’ or ‘ls’ will use LocalScaling


	‘dis_sim_local’ or ‘dsl’ will use DisSimLocal




If None, no hubness reduction will be performed (=vanilla kNN).



	hubness_params: dict, optional
	Override default parameters of the selected hubness reduction algorithm.
For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’}
a mutual proximity variant is used, which models distance distributions
with independent Gaussians.



	metric: string, default ‘minkowski’
	The distance metric used to calculate the neighbors within a
given radius for each sample point. The DistanceMetric class
gives a list of available metrics. The default distance is
‘euclidean’ (‘minkowski’ metric with the param equal to 2.)



	p: int, default 2
	Power parameter for the Minkowski metric. When p = 1, this is
equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.



	metric_params: dict, optional
	additional keyword arguments for the metric function.



	include_self: bool, default=False
	Whether or not to mark each sample as the first nearest neighbor to
itself. If None, then True is used for mode=’connectivity’ and False
for mode=’distance’ as this will preserve backwards compatibility.



	n_jobs: int or None, optional (default=None)
	The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors. See
Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs]
for more details.







	Returns

	
	A: sparse matrix in CSR format, shape = [n_samples, n_samples]
	A[i, j] is assigned the weight of edge that connects i to j.










See also


	kneighbors_graph
	





Examples

>>> X = [[0], [3], [1]]
>>> from skhubness.neighbors import radius_neighbors_graph
>>> A = radius_neighbors_graph(X, 1.5, mode='connectivity',
...                            include_self=True)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 0.],
       [1., 0., 1.]])













            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.KernelDensity


	
class skhubness.neighbors.KernelDensity(**kwargs)

	Kernel Density Estimation.

Read more in the scikit-learn User Guide [https://scikit-learn.org/stable/modules/density.html#kernel-density].


	Parameters

	
	bandwidthfloat
	The bandwidth of the kernel.



	algorithmstr
	The tree algorithm to use.  Valid options are
[‘kd_tree’|’ball_tree’|’auto’].  Default is ‘auto’.



	kernelstr
	The kernel to use.  Valid kernels are
[‘gaussian’|’tophat’|’epanechnikov’|’exponential’|’linear’|’cosine’]
Default is ‘gaussian’.



	metricstr
	The distance metric to use.  Note that not all metrics are
valid with all algorithms.  Refer to the documentation of
BallTree and KDTree for a description of
available algorithms.  Note that the normalization of the density
output is correct only for the Euclidean distance metric. Default
is ‘euclidean’.



	atolfloat
	The desired absolute tolerance of the result.  A larger tolerance will
generally lead to faster execution. Default is 0.



	rtolfloat
	The desired relative tolerance of the result.  A larger tolerance will
generally lead to faster execution.  Default is 1E-8.



	breadth_firstbool
	If true (default), use a breadth-first approach to the problem.
Otherwise use a depth-first approach.



	leaf_sizeint
	Specify the leaf size of the underlying tree.  See BallTree
or KDTree for details.  Default is 40.



	metric_paramsdict
	Additional parameters to be passed to the tree for use with the
metric.  For more information, see the documentation of
BallTree or KDTree.










See also


	sklearn.neighbors.KDTree
	K-dimensional tree for fast generalized N-point problems.



	sklearn.neighbors.BallTree
	Ball tree for fast generalized N-point problems.







Examples

Compute a gaussian kernel density estimate with a fixed bandwidth.
>>> import numpy as np
>>> rng = np.random.RandomState(42)
>>> X = rng.random_sample((100, 3))
>>> kde = KernelDensity(kernel=’gaussian’, bandwidth=0.5).fit(X)
>>> log_density = kde.score_samples(X[:3])
>>> log_density
array([-1.52955942, -1.51462041, -1.60244657])


	
__init__(*, bandwidth=1.0, algorithm='auto', kernel='gaussian', metric='euclidean', atol=0, rtol=0, breadth_first=True, leaf_size=40, metric_params=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__(*[, bandwidth, algorithm, kernel, …])

	Initialize self.



	fit(X[, y, sample_weight])

	Fit the Kernel Density model on the data.



	get_params([deep])

	Get parameters for this estimator.



	sample([n_samples, random_state])

	Generate random samples from the model.



	score(X[, y])

	Compute the total log probability density under the model.



	score_samples(X)

	Evaluate the log density model on the data.



	set_params(**params)

	Set the parameters of this estimator.







	
fit(X, y=None, sample_weight=None)

	Fit the Kernel Density model on the data.


	Parameters

	
	Xarray_like, shape (n_samples, n_features)
	List of n_features-dimensional data points.  Each row
corresponds to a single data point.



	yNone
	Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.



	sample_weightarray_like, shape (n_samples,), optional
	List of sample weights attached to the data X.


New in version 0.20.









	Returns

	
	selfobject
	Returns instance of object.














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
sample(n_samples=1, random_state=None)

	Generate random samples from the model.

Currently, this is implemented only for gaussian and tophat kernels.


	Parameters

	
	n_samplesint, optional
	Number of samples to generate. Defaults to 1.



	random_stateint, RandomState instance, default=None
	Determines random number generation used to generate
random samples. Pass an int for reproducible results
across multiple function calls.
See :term: Glossary <random_state>.







	Returns

	
	Xarray_like, shape (n_samples, n_features)
	List of samples.














	
score(X, y=None)

	Compute the total log probability density under the model.


	Parameters

	
	Xarray_like, shape (n_samples, n_features)
	List of n_features-dimensional data points.  Each row
corresponds to a single data point.



	yNone
	Ignored. This parameter exists only for compatibility with
sklearn.pipeline.Pipeline.







	Returns

	
	logprobfloat
	Total log-likelihood of the data in X. This is normalized to be a
probability density, so the value will be low for high-dimensional
data.














	
score_samples(X)

	Evaluate the log density model on the data.


	Parameters

	
	Xarray_like, shape (n_samples, n_features)
	An array of points to query.  Last dimension should match dimension
of training data (n_features).







	Returns

	
	densityndarray, shape (n_samples,)
	The array of log(density) evaluations. These are normalized to be
probability densities, so values will be low for high-dimensional
data.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.LocalOutlierFactor


	
class skhubness.neighbors.LocalOutlierFactor(n_neighbors=20, algorithm: str = 'auto', algorithm_params: Optional[dict] = None, hubness: Optional[str] = None, hubness_params: Optional[dict] = None, leaf_size=30, metric='minkowski', p=2, metric_params=None, contamination='auto', novelty=False, n_jobs=None)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lof.py#L23]

	Unsupervised Outlier Detection using Local Outlier Factor (LOF)

The anomaly score of each sample is called Local Outlier Factor.
It measures the local deviation of density of a given sample with
respect to its neighbors.
It is local in that the anomaly score depends on how isolated the object
is with respect to the surrounding neighborhood.
More precisely, locality is given by k-nearest neighbors, whose distance
is used to estimate the local density.
By comparing the local density of a sample to the local densities of
its neighbors, one can identify samples that have a substantially lower
density than their neighbors. These are considered outliers.


	Parameters

	
	n_neighborsint, optional (default=20)
	Number of neighbors to use by default for kneighbors() queries.
If n_neighbors is larger than the number of samples provided,
all samples will be used.



	algorithm{‘auto’, ‘hnsw’, ‘lsh’, ‘falconn_lsh’, ‘nng’, ‘rptree’, ‘ball_tree’, ‘kd_tree’, ‘brute’}, optional
	Algorithm used to compute the nearest neighbors:


	‘hnsw’ will use HNSW


	‘lsh’ will use PuffinnLSH


	‘falconn_lsh’ will use FalconnLSH


	‘nng’ will use NNG


	‘rptree’ will use RandomProjectionTree


	‘ball_tree’ will use BallTree


	‘kd_tree’ will use KDTree


	‘brute’ will use a brute-force search.


	‘auto’ will attempt to decide the most appropriate exact algorithm
based on the values passed to fit() method. This will not
select an approximate nearest neighbor algorithm.




Note: fitting on sparse input will override the setting of
this parameter, using brute force.



	algorithm_paramsdict, optional
	Override default parameters of the NN algorithm.
For example, with algorithm=’lsh’ and algorithm_params={n_candidates: 100}
one hundred approximate neighbors are retrieved with LSH.
If parameter hubness is set, the candidate neighbors are further reordered
with hubness reduction.
Finally, n_neighbors objects are used from the (optionally reordered) candidates.



	hubness{‘mutual_proximity’, ‘local_scaling’, ‘dis_sim_local’, None}, optional
	Hubness reduction algorithm


	‘mutual_proximity’ or ‘mp’ will use MutualProximity


	‘local_scaling’ or ‘ls’ will use LocalScaling


	‘dis_sim_local’ or ‘dsl’ will use DisSimLocal




If None, no hubness reduction will be performed (=vanilla kNN).



	hubness_params: dict, optional
	Override default parameters of the selected hubness reduction algorithm.
For example, with hubness=’mp’ and hubness_params={‘method’: ‘normal’}
a mutual proximity variant is used, which models distance distributions
with independent Gaussians.



	leaf_size: int, optional (default=30)
	Leaf size passed to BallTree or KDTree. This can
affect the speed of the construction and query, as well as the memory
required to store the tree. The optimal value depends on the
nature of the problem.



	metric: string or callable, default ‘minkowski’
	metric used for the distance computation. Any metric from scikit-learn
or scipy.spatial.distance can be used.

If ‘precomputed’, the training input X is expected to be a distance
matrix.

If metric is a callable function, it is called on each
pair of instances (rows) and the resulting value recorded. The callable
should take two arrays as input and return one value indicating the
distance between them. This works for Scipy’s metrics, but is less
efficient than passing the metric name as a string.

Valid values for metric are:


	from scikit-learn: [‘cityblock’, ‘cosine’, ‘euclidean’, ‘l1’, ‘l2’,
‘manhattan’]


	from scipy.spatial.distance: [‘braycurtis’, ‘canberra’, ‘chebyshev’,
‘correlation’, ‘dice’, ‘hamming’, ‘jaccard’, ‘kulsinski’,
‘mahalanobis’, ‘minkowski’, ‘rogerstanimoto’, ‘russellrao’,
‘seuclidean’, ‘sokalmichener’, ‘sokalsneath’, ‘sqeuclidean’,
‘yule’]




See the documentation for scipy.spatial.distance for details on these
metrics:
https://docs.scipy.org/doc/scipy/reference/spatial.distance.html



	p: integer, optional (default=2)
	Parameter for the Minkowski metric from
sklearn.metrics.pairwise.pairwise_distances(). When p = 1, this
is equivalent to using manhattan_distance (l1), and euclidean_distance
(l2) for p = 2. For arbitrary p, minkowski_distance (l_p) is used.



	metric_params: dict, optional (default=None)
	Additional keyword arguments for the metric function.



	contamination: ‘auto’ or float, optional (default=’auto’)
	The amount of contamination of the data set, i.e. the proportion
of outliers in the data set. When fitting this is used to define the
threshold on the scores of the samples.


	if ‘auto’, the threshold is determined as in the
original paper,


	if a float, the contamination should be in the range [0, 0.5].





Changed in version 0.22: The default value of contamination changed from 0.1
to 'auto'.





	novelty: boolean, default False
	By default, LocalOutlierFactor is only meant to be used for outlier
detection (novelty=False). Set novelty to True if you want to use
LocalOutlierFactor for novelty detection. In this case be aware that
that you should only use predict, decision_function and score_samples
on new unseen data and not on the training set.



	n_jobs: int or None, optional (default=None)
	The number of parallel jobs to run for neighbors search.
None means 1 unless in a joblib.parallel_backend context.
-1 means using all processors.
See Glossary [https://scikit-learn.org/stable/glossary.html#term-n-jobs/] for more details.
Affects only kneighbors() and kneighbors_graph() methods.









References
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	Breunig, M. M., Kriegel, H. P., Ng, R. T., & Sander, J. (2000, May).
LOF: identifying density-based local outliers. In ACM sigmod record.






	Attributes

	
	negative_outlier_factor_: numpy array, shape (n_samples,)
	The opposite LOF of the training samples. The higher, the more normal.
Inliers tend to have a LOF score close to 1 (negative_outlier_factor_
close to -1), while outliers tend to have a larger LOF score.

The local outlier factor (LOF) of a sample captures its
supposed ‘degree of abnormality’.
It is the average of the ratio of the local reachability density of
a sample and those of its k-nearest neighbors.



	n_neighbors_: integer
	The actual number of neighbors used for kneighbors() queries.



	offset_: float
	Offset used to obtain binary labels from the raw scores.
Observations having a negative_outlier_factor smaller than offset_
are detected as abnormal.
The offset is set to -1.5 (inliers score around -1), except when a
contamination parameter different than “auto” is provided. In that
case, the offset is defined in such a way we obtain the expected
number of outliers in training.










	
__init__(n_neighbors=20, algorithm: str = 'auto', algorithm_params: Optional[dict] = None, hubness: Optional[str] = None, hubness_params: Optional[dict] = None, leaf_size=30, metric='minkowski', p=2, metric_params=None, contamination='auto', novelty=False, n_jobs=None)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lof.py#L186]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_neighbors, algorithm, …])

	Initialize self.



	fit(X[, y])

	Fit the model using X as training data.



	get_params([deep])

	Get parameters for this estimator.



	kcandidates([X, n_neighbors, return_distance])

	Finds the K-neighbors of a point.



	kneighbors([X, n_neighbors, return_distance])

	TODO



	kneighbors_graph([X, n_neighbors, mode])

	Computes the (weighted) graph of k-Neighbors for points in X



	set_params(**params)

	Set the parameters of this estimator.






Attributes







	decision_function

	Shifted opposite of the Local Outlier Factor of X.



	fit_predict

	“Fits the model to the training set X and returns the labels.



	predict

	Predict the labels (1 inlier, -1 outlier) of X according to LOF.



	score_samples

	Opposite of the Local Outlier Factor of X.







	
property decision_function

	Shifted opposite of the Local Outlier Factor of X.

Bigger is better, i.e. large values correspond to inliers.

The shift offset allows a zero threshold for being an outlier.
Only available for novelty detection (when novelty is set to True).
The argument X is supposed to contain new data: if X contains a
point from training, it considers the later in its own neighborhood.
Also, the samples in X are not considered in the neighborhood of any
point.


	Parameters

	
	X: array-like, shape (n_samples, n_features)
	The query sample or samples to compute the Local Outlier Factor
w.r.t. the training samples.







	Returns

	
	shifted_opposite_lof_scores: array, shape (n_samples,)
	The shifted opposite of the Local Outlier Factor of each input
samples. The lower, the more abnormal. Negative scores represent
outliers, positive scores represent inliers.














	
fit(X, y=None) → skhubness.neighbors.lof.LocalOutlierFactor[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/lof.py#L257]

	Fit the model using X as training data.


	Parameters

	
	X: {array-like, sparse matrix, BallTree, KDTree}
	Training data. If array or matrix, shape [n_samples, n_features],
or [n_samples, n_samples] if metric=’precomputed’.



	y: Ignored
	not used, present for API consistency by convention.







	Returns

	
	self: object
	












	
property fit_predict

	“Fits the model to the training set X and returns the labels.

Label is 1 for an inlier and -1 for an outlier according to the LOF
score and the contamination parameter.


	Parameters

	
	X: array-like, shape (n_samples, n_features), default=None
	The query sample or samples to compute the Local Outlier Factor
w.r.t. to the training samples.



	y: Ignored
	not used, present for API consistency by convention.







	Returns

	
	is_inlier: array, shape (n_samples,)
	Returns -1 for anomalies/outliers and 1 for inliers.














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
kcandidates(X=None, n_neighbors=None, return_distance=True) → numpy.ndarray[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L433]

	Finds the K-neighbors of a point.
Returns indices of and distances to the neighbors of each point.


	Parameters

	
	Xarray-like, shape (n_query, n_features), or (n_query, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors to get (default is the value
passed to the constructor).



	return_distanceboolean, optional. Defaults to True.
	If False, distances will not be returned







	Returns

	
	distarray
	Array representing the lengths to points, only present if
return_distance=True



	indarray
	Indices of the nearest points in the population matrix.









Examples

In the following example, we construct a NeighborsClassifier
class from an array representing our data set and ask who’s
the closest point to [1,1,1]

>>> samples = [[0., 0., 0.], [0., .5, 0.], [1., 1., .5]]
>>> from skhubness.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=1)
>>> neigh.fit(samples) 
NearestNeighbors(algorithm='auto', leaf_size=30, ...)
>>> print(neigh.kneighbors([[1., 1., 1.]])) 
(array([[0.5]]), array([[2]]))





As you can see, it returns [[0.5]], and [[2]], which means that the
element is at distance 0.5 and is the third element of samples
(indexes start at 0). You can also query for multiple points:

>>> X = [[0., 1., 0.], [1., 0., 1.]]
>>> neigh.kneighbors(X, return_distance=False) 
array([[1],
       [2]]...)










	
kneighbors(X=None, n_neighbors=None, return_distance=True)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/neighbors/base.py#L613]

	TODO






	
kneighbors_graph(X=None, n_neighbors=None, mode='connectivity')

	Computes the (weighted) graph of k-Neighbors for points in X


	Parameters

	
	Xarray-like, shape (n_queries, n_features),                 or (n_queries, n_indexed) if metric == ‘precomputed’
	The query point or points.
If not provided, neighbors of each indexed point are returned.
In this case, the query point is not considered its own neighbor.



	n_neighborsint
	Number of neighbors for each sample.
(default is value passed to the constructor).



	mode{‘connectivity’, ‘distance’}, optional
	Type of returned matrix: ‘connectivity’ will return the
connectivity matrix with ones and zeros, in ‘distance’ the
edges are Euclidean distance between points.







	Returns

	
	Asparse graph in CSR format, shape = [n_queries, n_samples_fit]
	n_samples_fit is the number of samples in the fitted data
A[i, j] is assigned the weight of edge that connects i to j.










See also


	NearestNeighbors.radius_neighbors_graph
	





Examples

>>> X = [[0], [3], [1]]
>>> from sklearn.neighbors import NearestNeighbors
>>> neigh = NearestNeighbors(n_neighbors=2)
>>> neigh.fit(X)
NearestNeighbors(n_neighbors=2)
>>> A = neigh.kneighbors_graph(X)
>>> A.toarray()
array([[1., 0., 1.],
       [0., 1., 1.],
       [1., 0., 1.]])










	
property predict

	Predict the labels (1 inlier, -1 outlier) of X according to LOF.

This method allows to generalize prediction to new observations (not
in the training set). Only available for novelty detection (when
novelty is set to True).


	Parameters

	
	X: array-like, shape (n_samples, n_features)
	The query sample or samples to compute the Local Outlier Factor
w.r.t. to the training samples.







	Returns

	
	is_inlier: array, shape (n_samples,)
	Returns -1 for anomalies/outliers and +1 for inliers.














	
property score_samples

	Opposite of the Local Outlier Factor of X.

It is the opposite as bigger is better, i.e. large values correspond
to inliers.

Only available for novelty detection (when novelty is set to True).
The argument X is supposed to contain new data: if X contains a
point from training, it considers the later in its own neighborhood.
Also, the samples in X are not considered in the neighborhood of any
point.
The score_samples on training data is available by considering the
the negative_outlier_factor_ attribute.


	Parameters

	
	X: array-like, shape (n_samples, n_features)
	The query sample or samples to compute the Local Outlier Factor
w.r.t. the training samples.







	Returns

	
	opposite_lof_scores: array, shape (n_samples,)
	The opposite of the Local Outlier Factor of each input samples.
The lower, the more abnormal.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.neighbors.NeighborhoodComponentsAnalysis


	
class skhubness.neighbors.NeighborhoodComponentsAnalysis(**kwargs)

	Neighborhood Components Analysis

Neighborhood Component Analysis (NCA) is a machine learning algorithm for
metric learning. It learns a linear transformation in a supervised fashion
to improve the classification accuracy of a stochastic nearest neighbors
rule in the transformed space.

Read more in the scikit-learn User Guide [https://scikit-learn.org/stable/modules/neighbors.html#nca].


	Parameters

	
	n_componentsint, default=None
	Preferred dimensionality of the projected space.
If None it will be set to n_features.



	init{‘auto’, ‘pca’, ‘lda’, ‘identity’, ‘random’} or ndarray of shape             (n_features_a, n_features_b), default=’auto’
	Initialization of the linear transformation. Possible options are
‘auto’, ‘pca’, ‘lda’, ‘identity’, ‘random’, and a numpy array of shape
(n_features_a, n_features_b).


	‘auto’
	Depending on n_components, the most reasonable initialization
will be chosen. If n_components <= n_classes we use ‘lda’, as
it uses labels information. If not, but
n_components < min(n_features, n_samples), we use ‘pca’, as
it projects data in meaningful directions (those of higher
variance). Otherwise, we just use ‘identity’.



	‘pca’
	n_components principal components of the inputs passed
to fit() will be used to initialize the transformation.
(See PCA)



	‘lda’
	min(n_components, n_classes) most discriminative
components of the inputs passed to fit() will be used to
initialize the transformation. (If n_components > n_classes,
the rest of the components will be zero.) (See
LinearDiscriminantAnalysis)



	‘identity’
	If n_components is strictly smaller than the
dimensionality of the inputs passed to fit(), the identity
matrix will be truncated to the first n_components rows.



	‘random’
	The initial transformation will be a random array of shape
(n_components, n_features). Each value is sampled from the
standard normal distribution.



	numpy array
	n_features_b must match the dimensionality of the inputs passed to
fit() and n_features_a must be less than or equal to that.
If n_components is not None, n_features_a must match it.







	warm_startbool, default=False
	If True and fit() has been called before, the solution of the
previous call to fit() is used as the initial linear
transformation (n_components and init will be ignored).



	max_iterint, default=50
	Maximum number of iterations in the optimization.



	tolfloat, default=1e-5
	Convergence tolerance for the optimization.



	callbackcallable, default=None
	If not None, this function is called after every iteration of the
optimizer, taking as arguments the current solution (flattened
transformation matrix) and the number of iterations. This might be
useful in case one wants to examine or store the transformation
found after each iteration.



	verboseint, default=0
	If 0, no progress messages will be printed.
If 1, progress messages will be printed to stdout.
If > 1, progress messages will be printed and the disp
parameter of scipy.optimize.minimize() will be set to
verbose - 2.



	random_stateint or numpy.RandomState, default=None
	A pseudo random number generator object or a seed for it if int. If
init='random', random_state is used to initialize the random
transformation. If init='pca', random_state is passed as an
argument to PCA when initializing the transformation. Pass an int
for reproducible results across multiple function calls.
See :term: Glossary <random_state>.
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Examples

>>> from sklearn.neighbors import NeighborhoodComponentsAnalysis
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... stratify=y, test_size=0.7, random_state=42)
>>> nca = NeighborhoodComponentsAnalysis(random_state=42)
>>> nca.fit(X_train, y_train)
NeighborhoodComponentsAnalysis(...)
>>> knn = KNeighborsClassifier(n_neighbors=3)
>>> knn.fit(X_train, y_train)
KNeighborsClassifier(...)
>>> print(knn.score(X_test, y_test))
0.933333...
>>> knn.fit(nca.transform(X_train), y_train)
KNeighborsClassifier(...)
>>> print(knn.score(nca.transform(X_test), y_test))
0.961904...






	Attributes

	
	components_ndarray of shape (n_components, n_features)
	The linear transformation learned during fitting.



	n_iter_int
	Counts the number of iterations performed by the optimizer.



	random_state_numpy.RandomState
	Pseudo random number generator object used during initialization.










	
__init__(n_components=None, *, init='auto', warm_start=False, max_iter=50, tol=1e-05, callback=None, verbose=0, random_state=None)

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([n_components, init, warm_start, …])

	Initialize self.



	fit(X, y)

	Fit the model according to the given training data.



	fit_transform(X[, y])

	Fit to data, then transform it.



	get_params([deep])

	Get parameters for this estimator.



	set_params(**params)

	Set the parameters of this estimator.



	transform(X)

	Applies the learned transformation to the given data.







	
fit(X, y)

	Fit the model according to the given training data.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	The training samples.



	yarray-like of shape (n_samples,)
	The corresponding training labels.







	Returns

	
	selfobject
	returns a trained NeighborhoodComponentsAnalysis model.














	
fit_transform(X, y=None, **fit_params)

	Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params
and returns a transformed version of X.


	Parameters

	
	X{array-like, sparse matrix, dataframe} of shape                 (n_samples, n_features)
	

	yndarray of shape (n_samples,), default=None
	Target values.



	**fit_paramsdict
	Additional fit parameters.







	Returns

	
	X_newndarray array of shape (n_samples, n_features_new)
	Transformed array.














	
get_params(deep=True)

	Get parameters for this estimator.


	Parameters

	
	deepbool, default=True
	If True, will return the parameters for this estimator and
contained subobjects that are estimators.







	Returns

	
	paramsmapping of string to any
	Parameter names mapped to their values.














	
set_params(**params)

	Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects
(such as pipelines). The latter have parameters of the form
<component>__<parameter> so that it’s possible to update each
component of a nested object.


	Parameters

	
	**paramsdict
	Estimator parameters.







	Returns

	
	selfobject
	Estimator instance.














	
transform(X)

	Applies the learned transformation to the given data.


	Parameters

	
	Xarray-like of shape (n_samples, n_features)
	Data samples.







	Returns

	
	X_embedded: ndarray of shape (n_samples, n_components)
	The data samples transformed.







	Raises

	
	NotFittedError
	If fit() has not been called before.





















            

          

      

      

    

  

    
      
          
            
  
skhubness.reduction.MutualProximity


	
class skhubness.reduction.MutualProximity(method: str = 'normal', verbose: int = 0, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/mutual_proximity.py#L15]

	Hubness reduction with Mutual Proximity [1].


	Parameters

	
	method: ‘normal’ or ‘empiric’, default = ‘normal’
	Model distance distribution with ‘method’.


	‘normal’ or ‘gaussi’ model distance distributions with independent Gaussians (fast)


	‘empiric’ or ‘exact’ model distances with the empiric distributions (slow)






	verbose: int, default = 0
	If verbose > 0, show progress bar.









References


	1

	Schnitzer, D., Flexer, A., Schedl, M., & Widmer, G. (2012).
Local and global scaling reduce hubs in space. The Journal of Machine
Learning Research, 13(1), 2871–2902.






	
__init__(method: str = 'normal', verbose: int = 0, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/mutual_proximity.py#L36]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([method, verbose])

	Initialize self.



	fit(neigh_dist, neigh_ind[, X, assume_sorted])

	Fit the model using neigh_dist and neigh_ind as training data.



	fit_transform(neigh_dist, neigh_ind, X[, …])

	Equivalent to call .fit().transform()



	transform(neigh_dist, neigh_ind[, X, …])

	Transform distance between test and training data with Mutual Proximity.







	
fit(neigh_dist, neigh_ind, X=None, assume_sorted=None, *args, **kwargs) → skhubness.reduction.mutual_proximity.MutualProximity[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/mutual_proximity.py#L41]

	Fit the model using neigh_dist and neigh_ind as training data.


	Parameters

	
	neigh_dist: np.ndarray, shape (n_samples, n_neighbors)
	Distance matrix of training objects (rows) against their
individual k nearest neighbors (columns).



	neigh_ind: np.ndarray, shape (n_samples, n_neighbors)
	Neighbor indices corresponding to the values in neigh_dist.



	X: ignored
	

	assume_sorted: ignored
	












	
fit_transform(neigh_dist, neigh_ind, X, assume_sorted=True, return_distance=True, *args, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/base.py#L22]

	Equivalent to call .fit().transform()






	
transform(neigh_dist, neigh_ind, X=None, assume_sorted=None, *args, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/mutual_proximity.py#L78]

	Transform distance between test and training data with Mutual Proximity.


	Parameters

	
	neigh_dist: np.ndarray
	Distance matrix of test objects (rows) against their individual
k nearest neighbors among the training data (columns).



	neigh_ind: np.ndarray
	Neighbor indices corresponding to the values in neigh_dist



	X: ignored
	

	assume_sorted: ignored
	





	Returns

	
	hub_reduced_dist, neigh_ind
	Mutual Proximity distances, and corresponding neighbor indices









Notes

The returned distances are NOT sorted! If you use this class directly,
you will need to sort the returned matrices according to hub_reduced_dist.
Classes from skhubness.neighbors do this automatically.













            

          

      

      

    

  

    
      
          
            
  
skhubness.reduction.LocalScaling


	
class skhubness.reduction.LocalScaling(k: int = 5, method: str = 'standard', verbose: int = 0, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/local_scaling.py#L14]

	Hubness reduction with Local Scaling [1].


	Parameters

	
	k: int, default = 5
	Number of neighbors to consider for the rescaling



	method: ‘standard’ or ‘nicdm’, default = ‘standard’
	Perform local scaling with the specified variant:


	‘standard’ or ‘ls’ rescale distances using the distance to the k-th neighbor


	‘nicdm’ rescales distances using a statistic over distances to k neighbors






	verbose: int, default = 0
	If verbose > 0, show progress bar.









References


	1

	Schnitzer, D., Flexer, A., Schedl, M., & Widmer, G. (2012).
Local and global scaling reduce hubs in space. The Journal of Machine
Learning Research, 13(1), 2871–2902.






	
__init__(k: int = 5, method: str = 'standard', verbose: int = 0, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/local_scaling.py#L38]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([k, method, verbose])

	Initialize self.



	fit(neigh_dist, neigh_ind[, X, assume_sorted])

	Fit the model using neigh_dist and neigh_ind as training data.



	fit_transform(neigh_dist, neigh_ind, X[, …])

	Equivalent to call .fit().transform()



	transform(neigh_dist, neigh_ind[, X, …])

	Transform distance between test and training data with Mutual Proximity.







	
fit(neigh_dist, neigh_ind, X=None, assume_sorted: bool = True, *args, **kwargs) → skhubness.reduction.local_scaling.LocalScaling[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/local_scaling.py#L44]

	Fit the model using neigh_dist and neigh_ind as training data.


	Parameters

	
	neigh_dist: np.ndarray, shape (n_samples, n_neighbors)
	Distance matrix of training objects (rows) against their
individual k nearest neighbors (colums).



	neigh_ind: np.ndarray, shape (n_samples, n_neighbors)
	Neighbor indices corresponding to the values in neigh_dist.



	X: ignored
	

	assume_sorted: bool, default = True
	Assume input matrices are sorted according to neigh_dist.
If False, these are sorted here.














	
fit_transform(neigh_dist, neigh_ind, X, assume_sorted=True, return_distance=True, *args, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/base.py#L22]

	Equivalent to call .fit().transform()






	
transform(neigh_dist, neigh_ind, X=None, assume_sorted: bool = True, *args, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/local_scaling.py#L81]

	Transform distance between test and training data with Mutual Proximity.


	Parameters

	
	neigh_dist: np.ndarray, shape (n_query, n_neighbors)
	Distance matrix of test objects (rows) against their individual
k nearest neighbors among the training data (columns).



	neigh_ind: np.ndarray, shape (n_query, n_neighbors)
	Neighbor indices corresponding to the values in neigh_dist



	X: ignored
	

	assume_sorted: bool, default = True
	Assume input matrices are sorted according to neigh_dist.
If False, these are partitioned here.

NOTE: The returned matrices are never sorted.







	Returns

	
	hub_reduced_dist, neigh_ind
	Local scaling distances, and corresponding neighbor indices









Notes

The returned distances are NOT sorted! If you use this class directly,
you will need to sort the returned matrices according to hub_reduced_dist.
Classes from skhubness.neighbors do this automatically.













            

          

      

      

    

  

    
      
          
            
  
skhubness.reduction.DisSimLocal


	
class skhubness.reduction.DisSimLocal(k: int = 5, squared: bool = True, *args, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/dis_sim.py#L15]

	Hubness reduction with DisSimLocal [1].


	Parameters

	
	k: int, default = 5
	Number of neighbors to consider for the local centroids



	squared: bool, default = True
	DisSimLocal operates on squared Euclidean distances.
If True, return (quasi) squared Euclidean distances;
if False, return (quasi) Eucldean distances.









References


	1

	Hara K, Suzuki I, Kobayashi K, Fukumizu K, Radovanović M (2016)
Flattening the density gradient for eliminating spatial centrality to reduce hubness.
In: Proceedings of the 30th AAAI conference on artificial intelligence, pp 1659–1665.
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/viewPaper/12055






	
__init__(k: int = 5, squared: bool = True, *args, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/dis_sim.py#L35]

	Initialize self.  See help(type(self)) for accurate signature.





Methods







	__init__([k, squared])

	Initialize self.



	fit(neigh_dist, neigh_ind, X[, assume_sorted])

	Fit the model using X, neigh_dist, and neigh_ind as training data.



	fit_transform(neigh_dist, neigh_ind, X[, …])

	Equivalent to call .fit().transform()



	transform(neigh_dist, neigh_ind, X[, …])

	Transform distance between test and training data with DisSimLocal.







	
fit(neigh_dist: numpy.ndarray, neigh_ind: numpy.ndarray, X: numpy.ndarray, assume_sorted: bool = True, *args, **kwargs) → skhubness.reduction.dis_sim.DisSimLocal[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/dis_sim.py#L40]

	Fit the model using X, neigh_dist, and neigh_ind as training data.


	Parameters

	
	neigh_dist: np.ndarray, shape (n_samples, n_neighbors)
	Distance matrix of training objects (rows) against their
individual k nearest neighbors (colums).



	neigh_ind: np.ndarray, shape (n_samples, n_neighbors)
	Neighbor indices corresponding to the values in neigh_dist.



	X: np.ndarray, shape (n_samples, n_features)
	Training data, where n_samples is the number of vectors,
and n_features their dimensionality (number of features).



	assume_sorted: bool, default = True
	Assume input matrices are sorted according to neigh_dist.
If False, these are sorted here.














	
fit_transform(neigh_dist, neigh_ind, X, assume_sorted=True, return_distance=True, *args, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/base.py#L22]

	Equivalent to call .fit().transform()






	
transform(neigh_dist: np.ndarray, neigh_ind: np.ndarray, X: np.ndarray, assume_sorted: bool = True, *args, **kwargs)[source] [https://github.com/VarIr/scikit-hubness/blob/c332e6a/skhubness/reduction/dis_sim.py#L92]

	Transform distance between test and training data with DisSimLocal.


	Parameters

	
	neigh_dist: np.ndarray, shape (n_query, n_neighbors)
	Distance matrix of test objects (rows) against their individual
k nearest neighbors among the training data (columns).



	neigh_ind: np.ndarray, shape (n_query, n_neighbors)
	Neighbor indices corresponding to the values in neigh_dist



	X: np.ndarray, shape (n_query, n_features)
	Test data, where n_query is the number of vectors,
and n_features their dimensionality (number of features).



	assume_sorted: ignored
	





	Returns

	
	hub_reduced_dist, neigh_ind
	DisSimLocal distances, and corresponding neighbor indices









Notes

The returned distances are NOT sorted! If you use this class directly,
you will need to sort the returned matrices according to hub_reduced_dist.
Classes from skhubness.neighbors do this automatically.













            

          

      

      

    

  

    
      
          
            
  
skhubness.reduction.hubness_algorithms


	
skhubness.reduction.hubness_algorithms = ['mp', 'ls', 'dsl']

	Supported hubness reduction algorithms









            

          

      

      

    

  

    
      
          
            
  
History  of scikit-hubness

scikit-hubness builds upon previous software: the Hub-Toolbox.
The original Hub-Toolbox [https://github.com/OFAI/hub-toolbox-matlab]
was written for Matlab, and released in parallel
with the release of the first hubness reduction methods in
JMLR [http://www.jmlr.org/papers/v13/schnitzer12a.html].
In essence, it comprises methods to reduce hubness in distance matrices.

The Hub-Toolbox for Python3 [https://github.com/OFAI/hub-toolbox-python3]
is a port from Matlab to Python,
which over the years got several extensions and additional functionality,
such as more hubness reduction methods (Localized Centering, DisSimLocal, mp-dissim, etc.),
approximate hubness reduction, and more.
The software was developed by hubness researchers for hubness research.

The new scikit-hubness package is rewritten from scratch with a different goal in mind:
Providing easy-to-use neighborhood-based data mining methods (classification, regression, etc.)
with transparent hubness reduction.
Building upon scikit-learn’s neighbors package, we provide a drop-in replacement
called skhubness.neighbors, which offers all the functionality of sklearn.neighbors,
but adds additional functionality (approximate nearest neighbor search, hubness reduction).

This way, we think that machine learning researchers and practitioners
(many of which will be fluent in scikit-learn)
can quickly and effectively employ scikit-hubness in their existing workflows,
and improve learning in their high-dimensional data.





            

          

      

      

    

  

    
      
          
            
  
Contributing

scikit-hubness is free open source software.
Contributions from the community are highly appreciated.
Even small contributions improve the software’s quality.

Even if you are not familiar with programming languages and tools,
you may contribute by filing bugs or any problems as a
GitHub issue [https://github.com/VarIr/scikit-hubness/issues].


Git and branching model

We use git for version control (CVS), as do most projects nowadays.
If you are not familiar with git, there are lots of tutorials on
GitHub Guide [https://guides.github.com/].
All the important basics are covered in the
GitHub Git handbook [https://guides.github.com/introduction/git-handbook/].

Development of scikit-hubness (mostly) follows the
git flow branching model [https://nvie.com/posts/a-successful-git-branching-model/].
There are two main branches: master and develop.
For any changes, a new branch should be created.
If you want to add a new feature, fix a noncritical bug, etc. one should
branch off develop.
Only if you want to fix a critical bug, branch off master.




Workflow

In case of large changes to the software, please first get in contact
with the authors for coordination, for example by filing an
issue [https://github.com/VarIr/scikit-hubness/issues].
If you want to fix small issues (typos in the docs, obvious errors, etc.)
you can - of course - directly submit a pull request (PR).


	
	Create a fork of scikit-hubness in your GitHub account.
	Simply click “Fork” button on https://github.com/VarIr/scikit-hubness.







	
	Clone your fork on your computer.
	$ git clone git@github.com:YOUR-ACCOUNT-GOES-HERE/scikit-hubness.git && cd scikit-hubness







	
	Add remote upstream.
	$ git remote add upstream git@github.com:VarIr/scikit-hubness.git







	
	Create feature/bugfix branch.
	In case of feature or noncritical bugfix:
$ git checkout develop && git checkout -b featureXYZ develop

In case of critical bug:
$ git checkout -b bugfix123 master







	
	Implement feature/fix bug/fix typo/…
	Happy coding!







	
	Create a commit with meaningful message
	If you only modified existing files, simply
$ git commit -am "descriptive message what this commit does (in present tense) here"







	
	Push to GitHub
	e.g. $ git push origin featureXYZ







	
	Create pull request (PR)
	Git will likely provide a link to directly create the PR.
If not, click “New pull request” on your fork on GitHub.







	
	Wait…
	Several devops checks will be performed automatically
(e.g. continuous integration (CI) with Travis, AppVeyor).

The authors will get in contact with you,
and may ask for changes.







	
	Respond to code review.
	If there were issues with continous integration,
or the authors asked for changes, please create a new commit locally,
and simply push again to GitHub as you did before.
The PR will be updated automatically.







	
	Maintainers merge PR, when all issues are resolved.
	Thanks a lot for your contribution!












Code style and further guidelines


	Please make sure all code complies with PEP 8 [https://www.python.org/dev/peps/pep-0008/]


	All code should be documented sufficiently
(functions, classes, etc. must have docstrings with general description, parameters,
ideally return values, raised exceptions, notes, etc.)


	Documentation style is
NumPy format [https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard].


	New code must be covered by unit tests using pytest [https://docs.pytest.org/en/latest/].


	If you fix a bug, please provide regression tests (fail on old code, succeed on new code).


	It may be helpful to install scikit-hubness in editable mode for development.
When you have already cloned the package, switch into the corresponding directory, and

pip install -e .





(don’t omit the trailing period).
This way, any changes to the code are reflected immediately.
That is, you don’t need to install the package each and every time,
when you make changes while developing code.








Testing

In scikit-hubness, we aim for high code coverage. As of September 2019,
between 98% and 99% of all code lines are visited at least once when
running the complete test suite. This is primarily to ensure:


	correctness of the code (to some extent) and


	maintainability (new changes don’t break old code).




Creating a new PR, ideally all code would be covered by tests.
Sometimes, this is not feasible or only with large effort.
Pull requests will likely be accepted, if the overall code coverage
at least does not decrease.

Unit tests are automatically performed for each PR using CI tools online.
This may take some time, however.
To run the tests locally, you need pytest installed.
From the scikit-hubness directory, call

pytest skhubness/





to run all the tests. You can also restrict the tests to the subpackage
you are working on, down to single tests.
For example

pytest skhubness/reduction/tests/test_local_scaling.py --showlocals -v





only runs tests for hubness reduction with local scaling.

In order to check code coverage locally, you need the
pytest-cov plugin [https://github.com/pytest-dev/pytest-cov].

pytest skhubness/reduction/ --cov=skhubness/reduction/











            

          

      

      

    

  

    
      
          
            
  
Changelog


Next release [https://github.com/VarIr/scikit-hubness/compare/v0.21.1...HEAD]

…




0.21.1 [https://github.com/VarIr/scikit-hubness/releases/tag/v0.21.1] - 2019-12-10

This is a bugfix release due to the recent update of scikit-learn to v0.22.


Fixes


	Require scikit-learn v0.21.3.

Until the necessary adaptions for v0.22 are completed,
scikit-hubness will require scikit-learn v0.21.3.










0.21.0 [https://github.com/VarIr/scikit-hubness/releases/tag/v0.21.0] - 2019-11-25

This is the first major release of scikit-hubness.


Added


	Enable ONNG provided by NGT (optimized ANNG). Pass optimize=True to NNG.


	User Guide: Description of all subpackages and common usage scenarios.


	Examples: Various usage examples


	Several tests


	Classes inheriting from SupervisedIntegerMixin can be fit with an
ApproximateNearestNeighbor or NearestNeighbors instance,
thus reuse precomputed indices.







Changes


	Use argument algorithm='nng' for ANNG/ONNG provided by NGT instead of 'onng'.
Also set optimize=True in order to use ONNG.







Fixes


	DisSimLocal would previously fail when invoked as hubness='dis_sim_local'.


	Hubness reduction would previously ignore verbose arguments under certain circumstances.


	HNSW would previously ignore n_jobs on index creation.


	Fix installation instructions for puffinn.









0.21.0a9 [https://github.com/VarIr/scikit-hubness/releases/tag/v0.21.0-alpha.9] - 2019-10-30


Added


	General structure for docs


	Enable NGT OpenMP support on MacOS (in addition to Linux)


	Enable Puffinn LSH also on MacOS







Fixes


	Correct mutual proximity (empiric) calculation


	Better handling of optional packages (ANN libraries)







Maintenance


	streamlined CI builds


	several minor code improvements







New contributors


	Silvan David Peter









0.21.0a8 [https://github.com/VarIr/scikit-hubness/releases/tag/v0.21.0-alpha.8] - 2019-09-12


Added


	Approximate nearest neighbor search


	LSH by an additional provider, puffinn [https://github.com/puffinn/puffinn] (Linux only, atm)


	ANNG provided by ngtpy [https://github.com/yahoojapan/NGT/] (Linux, MacOS)


	Random projection forests provided by annoy [https://github.com/spotify/annoy] (Linux, MacOS, Windows)











Fixes


	Several minor issues


	Several documentations issues









0.21.0a7 [https://github.com/VarIr/scikit-hubness/releases/tag/v0.21.0-alpha.7] - 2019-07-17

The first alpha release of scikit-hubness to appear in this changelog.
It already contains the following features:


	Hubness estimation (exact or approximate)


	Hubness reduction (exact or approximate)


	Mutual proximity


	Local scaling


	DisSim Local






	Approximate nearest neighbor search


	HNSW provided by nmslib [https://github.com/nmslib/nmslib]


	LSH provided by falconn [https://github.com/FALCONN-LIB/FALCONN]
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scikit-learn examples adapted for scikit-hubness

Examples concerning using skhubness.neighbors
as drop-in replacement for sklearn.neighbors.

These examples are taken from scikit-learn and demonstrate the ease of transition
from sklearn.neighbors to skhubness.neighbors.
You will find that many examples require no more than modifying an import line,
and/or adding one argument when instantiating an estimator.

Note, that these examples are not intended to demonstrate improved learning performance
due to hubness reduction (the data are rather low-dimensional).


[image: Nearest Neighbors regression]
Nearest Neighbors regression








[image: Nearest Centroid Classification]
Nearest Centroid Classification








[image: Nearest Neighbors Classification]
Nearest Neighbors Classification








[image: Dimensionality Reduction with Neighborhood Components Analysis]
Dimensionality Reduction with Neighborhood Components Analysis








[image: Face completion with a multi-output estimators]
Face completion with a multi-output estimators








[image: Comparing Nearest Neighbors with and without Neighborhood Components Analysis]
Comparing Nearest Neighbors with and without Neighborhood Components Analysis








[image: Manifold learning on handwritten digits: Locally Linear Embedding, Isomap...]
Manifold learning on handwritten digits: Locally Linear Embedding, Isomap…










Download all examples in Python source code: auto_examples_python.zip




Download all examples in Jupyter notebooks: auto_examples_jupyter.zip





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Computation times

00:25.940 total execution time for documentation_auto_examples files:


	00:25.940: Nearest Neighbors Classification (plot_classification.py)


	00:00.000: Manifold learning on handwritten digits: Locally Linear Embedding, Isomap… (plot_lle_digits.py)


	00:00.000: Face completion with a multi-output estimators (plot_multioutput_face_completion.py)


	00:00.000: Comparing Nearest Neighbors with and without Neighborhood Components Analysis (plot_nca_classification.py)


	00:00.000: Dimensionality Reduction with Neighborhood Components Analysis (plot_nca_dim_reduction.py)


	00:00.000: Nearest Centroid Classification (plot_nearest_centroid.py)


	00:00.000: Nearest Neighbors regression (plot_regression.py)








            

          

      

      

    

  

    
      
          
            
  
Example: Approximate hubness reduction

These examples show how to combine approximate nearest neighbor search and hubness reduction.


[image: Example: Reusing index structures]
Example: Reusing index structures








[image: Example: Approximate hubness reduction]
Example: Approximate hubness reduction










Download all examples in Python source code: auto_examples_ahr_python.zip




Download all examples in Jupyter notebooks: auto_examples_ahr_jupyter.zip





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Example: Approximate nearest neighbor search

This example shows how to perform approximate nearest neighbor search.


[image: Retrieving GLOVE word vectors]
Retrieving GLOVE word vectors










Download all examples in Python source code: auto_examples_ann_python.zip




Download all examples in Jupyter notebooks: auto_examples_ann_jupyter.zip





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Example: Hubness reduction

These examples show how to perform hubness reduction in kNN classification
in (nested) cross-validation and pipelines.


[image: Example: skhubness in Pipelines]
Example: skhubness in Pipelines








[image: Face recognition (Olivetti faces)]
Face recognition (Olivetti faces)










Download all examples in Python source code: auto_examples_hr_python.zip




Download all examples in Jupyter notebooks: auto_examples_hr_jupyter.zip





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  _images/sphx_glr_plot_lle_digits_003.png
Principal Components prcjgctmn of the digits (time 0.00s)






_images/sphx_glr_plot_lle_digits_004.png
Linear Discriminant projection of thedigits (time 0.015)
=






_images/sphx_glr_plot_lle_digits_001.png
A selection from the 64-dimensional digits dataset

T e L L L e
P Sl TS O OIS el el
1 e 1 £ 0 3 e 1 B 3 L 1 |
819 3 3 04 e o el S 0 e 2 A D U0
T 1 D S 0T I e L S |
g A A D U I O U e g 0 O |
O ke £ T OO 01 0 o 1 |
el £ A 1 0 5 O 0 e S U S T |
T D T 1 e U0 0 1 O I e
0 9 O o 10 P 0 e O 0T A D
OO T b D T 0 O
DO e Tl WO A A T s S A
T D O el 30l O i ol 0 2|
1 O O b ot 0l O 4 e bl e L1
440 P S o e e U 8 90 A L
A D A e VD O ok ol S
D AP e W D O 1O O e e
ST O el A OO T Sl ol
0 e P e O ol e e v i 0 0 2 |
1P O T O N0 O e A ol 3|






_images/sphx_glr_plot_lle_digits_002.png
Random Projection of the digits

ol

CH BT
1

i3 %] 5| B

a
i
@i






_images/sphx_glr_plot_lle_digits_007.png
Modified Locally Linear Embedding of the digits ltlm’g_(‘).705)
&






_images/sphx_glr_plot_lle_digits_008.png
Hessian Locally Linear Embedding of the digits (tim:

0.855)






_images/sphx_glr_plot_lle_digits_005.png
Isomap projectign of the digits (time 1.34s)






_images/sphx_glr_plot_lle_digits_006.png
Locally Linear Ezpedding of the digits (time 0.405)

1y b






_images/sphx_glr_plot_lle_digits_009.png





_images/sphx_glr_plot_lle_digits_010.png
MDS embedding of the digits (time 20.76s)






_images/sphx_glr_plot_lle_digits_011.png
 embedding (time 27.61s)






nav.xhtml

    
      Table of Contents


      
        		
          scikit-hubness: high-dimensional data mining
        


      


    
  

_images/sphx_glr_plot_lle_digits_014.png
SpectraLembedding of the digits (time 0.38s)
& g






_images/sphx_glr_plot_lle_digits_015.png
t-SNE embedding of the digits (time 5.81s)






_images/sphx_glr_plot_lle_digits_012.png





_images/sphx_glr_plot_lle_digits_013.png
Random forest embedding of the digits (time 0.265)

o[0] I p 0Tl
o

o i






_images/sphx_glr_plot_multioutput_face_completion_001.png
Face completion with multi-output estimators

true faces Extra trees Linear regression Ridge k-NN MP

e e e






_images/sphx_glr_plot_multioutput_face_completion_thumb.png
FEEREE
0 0
]
amEsss
FEEEEE





_images/sphx_glr_plot_lle_digits_016.png
NCA embedding of the digits (time 2.44s)

gt (. T L






_images/sphx_glr_plot_lle_digits_thumb.png
Aselection from the 64-dimensional digits dataset






_images/sphx_glr_plot_nca_classification_001.png
KNN (k = 1)






_images/sphx_glr_plot_nca_classification_002.png
NCA, KNN (k = 1)






_images/sphx_glr_plot_nca_classification_003.png
KNN, MP (normal) (k = 1)






_images/sphx_glr_plot_nca_classification_006.png
KNN, LS (nicdm) (k = 1)






_images/sphx_glr_plot_nca_classification_thumb.png
KNN (k= 1)






_images/sphx_glr_plot_nca_classification_004.png
KNN, MP (empiric) (k = 1)






_images/sphx_glr_plot_nca_classification_005.png
KNN, LS (standard) (k = 1)






_images/sphx_glr_plot_nca_dim_reduction_003.png
NCA, KNN (k=3)
Test accuracy = 0.70

200

100

—200 -100

-300





_images/sphx_glr_plot_nca_dim_reduction_thumb.png
PR KN (=)
Test accuracy = 05:

6o






_images/sphx_glr_plot_nca_dim_reduction_001.png
PCA, KNN (k=3)
Test accuracy = 0.52

10.0

75

5.0

2.5

0.0

-5.0

-75

-75 =50 -25 0.0 2.5 5.0 75 10.0





_images/sphx_glr_plot_nca_dim_reduction_002.png
LDA, KNN (k=3)
Test accuracy = 0.66

2.5

5.0






_images/sphx_glr_plot_nearest_centroid_002.png
3-Class classification (shrink_threshold=0.2)






_images/sphx_glr_plot_nearest_centroid_thumb.png
3-Class classifcation (shrink.threshold=None)






_images/sphx_glr_plot_nearest_centroid_001.png
3-Class classification (shrink_threshold=None)






_images/sphx_glr_reusing_index_thumb.png





_images/sphx_glr_word_embeddings_thumb.png





_images/sphx_glr_plot_regression_001.png
KNeighborsRegressor (k = 5, weights = 'uniform’, hubness = 'None') KNeighborsRegressor (k = 5, weights = 'uniform’, hubness = 'local_scaling’)

1.00 — prediction 1.00 — prediction
M . o data ° . o data
0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00
—0.25 -0.25
—0.50 ~0.50
—0.75 -0.75
-1.00 -1.00
] 1 2 3 4 5 ] 1 2 3 4 5
KNeighborsRegressor (k = 5, weights = 'distance’, hubness = 'None') KNeighborsRegressor (k = 5, weights = 'distance’, hubness = ‘local_scaling’)
100 — prediction 100 —— prediction
o data o data
0.75 0.75
0.50 0.50
0.25 0.25
0.00 0.00
—0.25 -0.25
—0.50 ~0.50
—0.75 -0.75
-1.00 -1.00






_images/sphx_glr_plot_regression_thumb.png





_static/broken_example.png





_static/file.png





_static/plus.png





_static/minus.png





_static/no_image.png





_images/sphx_glr_plot_classification_001.png
3-Class classification (k = 15, hubness = ‘None’)






_images/sphx_glr_plot_classification_002.png
3-Class classification (k = 15, hubness = 'mutual_proximity')

10





_images/sphx_glr_olivetti_faces_thumb.png





_images/sphx_glr_pipelines_thumb.png





_images/sphx_glr_plot_classification_thumb.png
sification (k = 15, hubness = None')






_images/sphx_glr_high_dim_gaussian_thumb.png





